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In this paper, authors have proposed a posterior multi-objective optimization algorithm named Non-dominated Sorting 
Social Group Optimization (NSSGO) for multi-objective optimization. ‘Non-dominated Sorting’ is the technique of sorting 
the population into several non-domination levels and ‘Crowding Distance’ is a concept used for maintaining diversity 
among the current best solutions. The algorithm acquires the combined concept of both. The proposed algorithm was 
simulated on a set of multi-objective CEC 2009 functions and competitive results were obtained. 
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Introduction 
Various real-world problems possess multi-objective 

solutions but with some degree of conflict among them. 
Such problems are popularly termed as multi-objective 
optimization problems (MOPs). Solution set these 
problems are called Pareto optimal solutions.1 Multi-
objective optimization comprises two independent 
tasks i.e. searching task and decision-making task. 
Searching task intends to find Pareto optimal solutions 
which should have minimal difference to the solutions 
on the true Pareto front, whereas choosing the most 
appropriate solution from the searched pareto optimal 
solutions is the goal of the decision-making task. 

In 1984, the multi-objective evolutionary algorithm 
(MOEA)2 was proposed by Schaffer to solve multi-
objective problems. To solve the same, V Pareto, in 
1896, defined the optimum in multi-objective 
optimization. As compared to the classical techniques, 
Evolutionary computation provides Pareto optimal 
solutions in a more quick and efficient way. Since 
1984, several MOEAs have been proposed such as 
niched Pareto genetic algorithm (NPGA)3, niched 
Pareto genetic algorithm 2 (NPGA2)4, non-dominated 
sorting genetic algorithm ( NSGA)5, nondominated 
sorting genetic algorithm-II (NSGA-II)6, strength 
Pareto evolutionary algorithm (SPEA)7, strength Pareto 
evolutionary algorithm 2 (SPEA2)8, multiobjective 
particle swarm optimization (MOPSO)9, multiobjective 

differential evolution (MODE)10, Multi-objective 
optimization using self-adaptive differential evolution 
(MOSaDE)11, voronoi-based estimation of distribution 
algorithm (VEDA)12, regularity model-based 
multiobjective estimation of distribution algorithm 
(RM-MEDA)12, and multiobjective evolutionary 
algorithm based on decomposition (MOEA-D).13 This 
work focuses on developing a non-dominated sorting 
social group optimization (NSSGO) for MOPs in 
which population is sorted into several non-domination 
levels using the ‘NSGA-II concept’ and diversity 
among the current best solutions is maintained using 
the ‘crowding distance concept’. The crowding 
distance is directly proportional to the fitness of the 
solution. It was simulated upon six unconstrained 
benchmark problems of CEC 2009(14) for performance 
evaluation and the better solutions were obtained as 
compared to MOPSO and MOEA-D. This non-
dominated concept is utilized for solving multi-
objective optimization problems of papers.15–19 These 
problems also can be solved using our proposal, 
NSSGO algorithm and kept as future work. The rest of 
the paper contains the description of the NSSGO, then 
results and discussions followed by conclusions. 

The Proposed NSSGO Algorithm 
NSSGO algorithm is the multi-objective version of 

the Social Group Optimization algorithm20–23 which is 
inspired from the interaction of the humans living in a 
society. Here the candidate solution is represented by 
a person and every person has some personality traits 
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using which he finds the solution to a problem. These 
personality traits represent the dimension of the 
problem or in other words the number of design 
variables a problem has. There are two phases in the 
algorithm i.e. ‘improving phase’ and ‘acquiring 
phase’. Every person has got his own traits using 
which he solves any problem. These traits represent 
the dimension of the candidate solution. Improving 
Phase makes every individual to learn from the ‘best 
person’ and Acquiring Phase makes the individuals 
interact among each other and learn from the better 
one as well as from the ‘best person’. The original 
paper can be referred to for details. 
 

Description of the NSSGO 
NSSGO algorithm is a supplement of SGO 

algorithm consists of improving phase and acquiring 
phase for solving MOPs. It is a posterior approach. 
The following sections describe these methods. 
 

Selection Operator  
In NSSGO, the rank-based comparison is performed 

to choose the best solution as it affects not only the 
convergence capability of the algorithm but also the 
divergence of non-dominated solutions. Rank is 
assigned with NSGA-II and crowding distance 
techniques. Here, the non-dominated solutions obtained 
in the previous iteration are kept by an abounded 
external archive. To ensure that the chosen solutions 
occupy the low-populated region of the search space, 
we select gbest among non-dominated solutions with the 
value of the highest crowding distance. 

Initially, N numbers of solutions (persons) are 
created as a random population, followed by ranking 
and sorting according to the non-dominance concept. 
A person who achieves 1st rank is considered as ‘gbest’ 
or the best person. If more than one person has the 
same rank, then a person with a greater ‘crowding 
distance’ value is considered. Hence it is ensured that 
the best person (gbest) is selected from the low-
populated region and diversity is maintained. Then it 
is followed by the ‘improving phase’ and ‘acquiring 
phase’ of the algorithm. Always the selection of the 
best person (gbest) follows the same rank based 
technique as mentioned above. 
 

Non-Dominated Sorting  
Rank in Non-Dominated sorting technique is based 

on the dominance concepts. According to this concept 
a solution 𝑃௜ is said to dominate other solution 𝑃௝ if 
and only if 𝑃௜ is no worse than 𝑃௝ with respect to all 
objectives and 𝑃௜ is strictly better than 𝑃௝ in at least 

one objective. The 𝑃௜ does not dominate 𝑃௝ if it 
violates any of the two conditions. 

Suppose there is a set of random solution called S. 
When no other solutions dominate a particular 
solution, it is called a ‘non-dominated solution’ and 
those which are segregated in the first run are set to 
Rank 1 and deleted. Again the same procedure is 
repeated for the rest of the solutions in S, till all 
solutions get their rank and are in sorted order. 
 
Crowding Distance Sorting 

Crowding distance6 is the technique used to 
estimate the density of other solutions that surrounds 
a particular solution 𝑖 in the population. 

In two situations, a crowding distance mechanism is 
needed. First, when there is non-dominance between the 
target vector and trial vector, the crowding distance of 
the two are evaluated. Evaluation is performed based on 
the externally archived non-dominated solutions. For 
next-generation, the new target vector is the less 
crowded one. Secondly, the solutions present in the most 
populated search space should be deleted, when the size 
of the external archive exceeds a specified size. The 
computation of crowding distance is performed by 
sorting the population, in ascending order of magnitude, 
according to each objective function value, followed by 
assigning the boundary solutions with infinite distance 
values. Boundary solutions for each objective function 
are the solutions with the smallest and largest function 
values. The absolute normalized difference in the 
function values of two adjacent solutions is calculated 
and assigned to all other intermediate solutions. The 
same calculation is performed for other objective 
functions. The sum of individual distance values of each 
objective is calculated and taken as overall crowding-
distance. Normalization of objective functions is 
performed prior to the calculation of crowding distance. 
 
Pseudo-Code for NSSGO Algorithm 

The pseudo-code of NSSGO is summarized as 
follows:  
 

Initialize N (Number of persons, i.e., population 
size), person 𝑃௜, Max_Fes (Maximum number of 
function evaluations), c (self-introspection parameter) 

Assign lower and upper bounds of decision 
variables 𝑃௠௜௡ሾ𝑑ሿ and 𝑃௠௔௫ሾ𝑑ሿ, d=1,2,....., D, where 
D is the number of decision variables. 

Generate N random solutions using a uniform 
distribution. 

Evaluate function values at these N solutions. 
Adopt non-dominated and crowding distance sorting 
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to these N solutions and store them in the current 
archive. 
 

t=0; 
 

While (t<Max_FEs) select the best solution ‘gbest’ 
from the current archive for i=1:N// Improving phase 
generate a trial individual 𝑇௜=c×𝑃௜+rand×(gbestെ𝑃௜) 
evaluate function value; t++; non-domination 
checking of trial individual 𝑇௜ with the target 
individual 𝑃௜  if (𝑇௜ dominate 𝑃௜) replace 𝑃௜ by 𝑇௜ else 
if (𝑇௜ and 𝑃௜ non-dominates each other) select an 
individual randomly and replace 𝑃௜ end if end for  

Combine these N new solutions with current archive 
N solutions, then select N fittest solution using non-
dominated and crowding distance sorting from these 
2N solutions and store them in current archive select 
the best solution ‘gbest’ from the current archive for 
i=1:N// Acquiring phase select randomly an individual 
𝑃௝ different from the target individual 𝑃௜  if (𝑃௝ 
dominates 𝑃௜) 𝑇௜ = 𝑃௜ +rand×(𝑃௜ െ 𝑃௝)+rand×(gbestെ𝑃௜); 
else 𝑇௜=𝑃௜+rand×(𝑃௝ െ 𝑃௜)+rand×(gbestെ𝑃௜); end if 
evaluate function value; t++; non-domination checking 
of trial individual 𝑇௜ with the target individual 𝑃௜ if (𝑇௜ 
dominate 𝑃௜) replace 𝑃௜ by 𝑇௜  else if (𝑇௜ and 𝑃௜ non-
dominates each other) select randomly an individual 
and replace 𝑃௜  end if end for 

Combine these N new solutions with current 
archive N solutions, then select N fittest solution 
using non-dominated and crowding distance sorting 
from these 2N solutions and store them in current 
archive end while 
 

Results and Discussion 
The experimentation and demonstration of the 

Non-dominated Sorting Social Group Optimization 
(NSSGO) algorithm has been carried out in this paper. 
The analysis of the results showcase how well the 
NSSGO performs on multi-objective test problems. 
We have considered six standard multi-objective test 
problems proposed in CEC 2009. Out of which three 
are bi-objective, and three are tri-objective test 
problems with ten decision variables. These 
benchmark problems are provided in Table 1. The 
performance of the NSSGO algorithm has been 
compared to MOEA/D and MOPSO of literature. 
 

Experimental Setup 
We have set the common control parameters such 

as population size (pop_size) = 100, maximum 
number of function evaluation (Max_FEs) = 30,000 
and number of archive point = 100 for all 

experiments. The other algorithmic specific 
parameters are considered as follows. The values 
assigned to the parameters have been taken from the 
original paper of SGO.16 
 

Parameter values for MOPSO are as follows: 
 c1 (represents the cognitive parameter) = 1 
 c2 (represents the social parameter) = 2 
 w (inertia weight) = 0.5 
 𝛼 (grid inflation parameter) = 0.1 
 𝛽 (leader selection pressure parameter) = 4 
 𝛾 ( deletion selection pressure parameter) = 2 
 𝑛 Grid (no. of grids in each dimension) =10 
 

Parameter values for MOEA/D are as follows: 
 N (No. of Sub-problems) = 100 
 T (number of neighbors) = 0.1N = 10 
 𝑛௥ (the maximal copies of a new child in update) 

= 0.01N = 1 
 𝛿 (the probability of selecting parents from the 

neighborhood) = 0.9 
 𝐶𝑅 =F (mutation rates) = 0.5 
 𝜌 (distribution index) = 30 
 

Parameter values for NSSGO: 
 C (self-introspection parameter) = 0.2 

The entire experiment is conducted in MATLAB 
2016a in Windows 10 Environment, on a machine 
having an Intel Core i5 processor with 8 GB memory. 

For estimation of convergence, IGD (Inverted 
Generational Distance)24 has been used as a 
performance metric. For quantification and 
measurement of the coverage, SP (Spacing)25 and MS 
(Maximum Spread)26 have been used. The 
mathematical definition of IGD, SP, and MS are 
given below: 
 

IGD = 
ට∑ ௗ೔

మ೙
೔సభ

௡
, where ‘n’ is the solutions on the 

Pareto front and 𝑑௜ is the value obtained by finding 
the Euclidean distance between ith true Pareto optimal 
solution and nearest obtained Pareto optimal solutions 
in objective space.  
 

SP=ට
ଵ

௡ିଵ
∑ ሺ𝑑 െ 𝑑௜ሻଶ
௡
௜ୀଵ , where 𝑑 signifies the 

average of all 𝑑௜ , n is the number of obtained 
solutions on the Pareto-front and 𝑑௜ = 

min௝ሺ∑ ห𝑓௞
௜ െ 𝑓௞

௝หெ
௞ୀଵ  ሻ for all i,j = 1,2,3,….,n and M is 

No. of objective functions. 
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The maximum spread is given by  
 

MS (𝑃𝐹,𝑃𝐹ሻ ൌ
ඨ∑ ሺ 

ౣ౟౤ቀುಷೕ.ೠ,ುಷೕ,ೠቁష೘ೌೣቀುಷೕ.೗, ುಷೕ,೗ቁ

ುಷೕ,ೠషುಷೕ,೗
ሻమಾ

ೕసభ

ெ
 

 

where 𝑃𝐹௝.௟ and 𝑃𝐹௝.௨ are the minimum and maximum 
value of the jth objective in the obtained Pareto optimal 

solutions. 𝑃𝐹௝,௨ and 𝑃𝐹௝,௟ are the maximum and 
minimum value of jth objective in true Pareto optimal 
solutions. Measurement of coverage of optimal PF by 
obtained PF is performed by MS. Higher the value of MS, 
the larger the area of 𝑃𝐹 covered by PF. 

IGD, SP, and MS performance metrics allow 
comparing the performance of the algorithms 

Table 1 — Mathematical formulation of multiobjective problems 

Name Mathematical formulation, Bi-objective 

UF1 
𝑓ଵ ൌ 𝑥ଵ ൅

2
|𝐽ଵ|

෍ሾ𝑥௝ െ sin ሺ6𝜋𝑥ଵ ൅
𝑗𝜋
𝑛
ሻሿଶ ,

௝∈௃భ

 𝑓ଶ ൌ 1 െ √𝑥 ൅
2

|𝐽ଶ|
෍ሾ𝑥௝ െ sin ሺ6𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
ሻሿଶ

௝∈௃మ

 

𝐽ଵ ൌ ሼ𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ൑ 𝑗 ൑ 𝑛ሽ, 𝐽ଶ ൌ ሼ𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ൑ 𝑗 ൑ 𝑛ሽ 
UF2 

𝑓ଵ ൌ 𝑥ଵ ൅
2

|𝐽ଵ|
෍𝑦௝ଶ ,
௝∈௃భ

 𝑓ଶ ൌ 1 െ √𝑥 ൅
2

|𝐽ଶ|
෍𝑦௝ଶ

௝∈௃మ

 

𝐽ଵ ൌ ሼ𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ൑ 𝑗 ൑ 𝑛ሽ, 𝐽ଶ ൌ ሼ𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ൑ 𝑗 ൑ 𝑛ሽ 

𝑦௝ ൌ ൞
𝑥௝ െ ൤0.3𝑥ଵ

ଶ cos ൬24𝜋𝑥ଵ ൅
4𝑗𝜋
𝑛
൰ ൅ 0.6𝑥ଵ൨ 𝑐𝑜𝑠 ൬6𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
൰  𝑖𝑓 𝑗 ∈ 𝐽ଵ

𝑥௝ െ ൤0.3𝑥ଵ
ଶ cos ൬24𝜋𝑥ଵ ൅

4𝑗𝜋
𝑛
൰ ൅ 0.6𝑥ଵ൨ 𝑠𝑖𝑛 ൬6𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
൰  𝑖𝑓 𝑗 ∈ 𝐽ଶ

 

UF3 
𝑓ଵ ൌ 𝑥ଵ ൅

2
|𝐽ଵ|

ሺ4 ෍𝑦௝ଶ െ 2ෑ cosቆ
20𝑦௝గ

ඥ𝑗
ቇ ൅ 2ሻ

௝∈௃భ

,
௝∈௃భ

𝑓ଶ ൌ ඥ𝑥ଵ ൅
2

|𝐽ଶ|
ሺ4 ෍𝑦௝ଶ െ 2ෑ cosቆ

20𝑦௝గ

ඥ𝑗
ቇ ൅ 2ሻ

௝∈௃మ௝∈௃మ

 

𝐽ଵ ൌ ሼ𝑗|𝑗 𝑖𝑠 𝑜𝑑𝑑 𝑎𝑛𝑑 2 ൑ 𝑗 ൑ 𝑛ሽ, 𝐽ଶ ൌ ሼ𝑗|𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 2 ൑ 𝑗 ൑ 𝑛ሽ, 𝑦௝ ൌ 𝑥௝ െ 𝑥ଵ
଴.ହሺଵ.଴ା

యሺೕషమሻ
೙షమ

ሻ
 j=2,3,.......,n 

 Mathematical formulation, Tri-objective 
UF8 

𝑓ଵ ൌ cosሺ0.5𝑥ଵ𝜋ሻ cosሺ0.5𝑥ଶ𝜋ሻ ൅
2

|𝐽ଵ|
෍ሺ𝑥௝ െ 2𝑥ଶsin ሺ2𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
ሻଶ ሻ

௝∈௃భ

 

𝑓ଶ ൌ cosሺ0.5𝑥ଵ𝜋ሻ sinሺ0.5𝑥ଶ𝜋ሻ ൅
2

|𝐽ଶ|
෍ሺ𝑥௝ െ 2𝑥ଶ sin ൬2𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
൰ሻଶ ሻ

௝∈௃మ

 

𝑓ଷ ൌ sinሺ0.5𝑥ଵ𝜋ሻ ൅
2

|𝐽ଷ|
෍ሺ𝑥௝ െ 2𝑥ଶsin ሺ2𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
ሻଶ ሻ

௝∈௃య

 

𝐽ଷ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ 
𝐽ଵ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 െ 1 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ, 𝐽ଶ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 െ 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ 

UF9 
𝑓ଵ ൌ 0.5ሾmaxሼ0, ሺ1 ൅ ϵሻሺ1 െ 4ሺ2𝑥ଵ െ 1ሻଶሻሽ ൅ 2𝑥ଵሿ𝑥ଶ ൅

2
|𝐽ଵ|

෍ሺ𝑥௝ െ 2𝑥ଶsin ሺ2𝜋𝑥ଵ ൅
𝑗𝜋
𝑛
ሻଶ ሻ

௝∈௃భ

 

𝑓ଶ ൌ 0.5ሾmaxሼ0, ሺ1 ൅ ϵሻሺ1 െ 4ሺ2𝑥ଵ െ 1ሻଶሻሽ ൅ 2𝑥ଵሿ𝑥ଶ ൅
2

|𝐽ଶ|
෍ሺ𝑥௝ െ 2𝑥ଶ sin ൬2𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
൰ሻଶ ሻ

௝∈௃మ

 

𝑓ଷ ൌ 1 െ 𝑥ଶ ൅
2

|𝐽ଷ|
෍ሺ𝑥௝ െ 2𝑥ଶsin ሺ2𝜋𝑥ଵ ൅

𝑗𝜋
𝑛
ሻଶ ሻ

௝∈௃య

 

𝐽ଵ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 െ 1 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ, 𝐽ଶ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 െ 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ 
𝐽ଷ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ, ϵ ൌ 0.1 

UF10 
𝑓ଵ ൌ cosሺ0.5𝑥ଵ𝜋ሻ cosሺ0.5𝑥ଶ𝜋ሻ ൅

2
|𝐽ଵ|

෍ሾ4𝑦௝
ଶ െ 𝑐𝑜 𝑠൫8𝜋𝑦௝൯ ൅ 1ሿ

௝∈௃భ

 

𝑓ଶ ൌ cosሺ0.5𝑥ଵ𝜋ሻ sinሺ0.5𝑥ଶ𝜋ሻ ൅
2

|𝐽ଶ|
෍ሾ4𝑦௝

ଶ െ 𝑐𝑜 𝑠൫8𝜋𝑦௝൯ ൅ 1ሿ
௝∈௃భ

 

𝑓ଷ ൌ sinሺ0.5𝑥ଵ𝜋ሻ ൅
2

|𝐽ଷ|
෍ሾ4𝑦௝

ଶ െ 𝑐𝑜 𝑠൫8𝜋𝑦௝൯ ൅ 1ሿ 
௝∈௃భ

 

𝐽ଵ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 െ 1 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ, 𝐽ଶ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 െ 2 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ 

𝐽ଷ ൌ ሼ𝑗|3 ൑ 𝑗 ൑ 𝑛, 𝑎𝑛𝑑 𝑗 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3ሽ 𝑦௝ ൌ 𝑥௝ െ 2𝑥ଶsin ሺ2𝜋𝑥ଵ ൅
௝గ

௡
ሻ, j = 3,4,.....,n 
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NSSGO, MOPSO, and MOEA/D qualitatively and 
quantitatively both in parameter space and search 
space. Tables 2–4 shows the statistical results 
obtained by running the algorithms ten times on the 
test problems, and qualitative results are provided in 
Fig. 1. 
 
Performance Analysis 

Statistical results of the algorithms for IGD have 
been provided in Table 2. It shows the accuracy and 
convergence of an algorithm. Statistical results for SP 
have been given in Table 3, and Table 4 provides 
statistical results of the algorithms for MS that is the 
measure of coverage of an algorithm. From the tables, 
we have found out the following observations: 
 
For UF1 Problem:  

NSSGO finds the best of best performance and best 
of worse performance, whereas MOPSO finds the 
best of average performance with respect to IGD. 
MOEA/D finds best in all performances such as best, 
average, and worse performance with respect to SP. 
Similarly, MOPSO finds best in both best 
performance and average performance, and NSSGO 
finds best in worse performance to MS for the UF1 
problem. The graphical representation of Pareto-
optimal solutions obtained from each algorithm on 
UF1 is depicted in Fig. 1. Hence, it can be stated that 
the MOPSO algorithm provides better convergence 
and best coverage onUF1 in comparison to other 
algorithms. 

For UF2 Problem:  
MOEA/D finds the best of best performance, 

whereas NSSGO finds the best of average 
performance and best of worse performance with 
respect to IGD. NSSGO finds best in the best 
performance, best in average performance, and best in 
worse performance with respect to SP. Similarly, 
MOPSO finds best in both best performance and 
average performance, and NSSGO finds best in worse 
performance to MS for the UF2 problem. The 

Table 2 — Statistical results for IGD on benchmark problems 

 Result of 
MOPSO 

Result of 
MOEA/D 

Result of 
NSSGO 

Result of 
MOPSO 

Result of 
MOEA/D 

Result of 
NSSGO 

 UF1 UF2 

Best 0.0993 0.0963 0.0884  0.0852 0.0385 0.0447 
Median 0.1497 0.1325 0.1942 0.1153 0.0571 0.0625 
Worse 0.3477 0.4496 0.3436 0.1915 0.1506 0.1029 
Mean 0.1675 0.1795 0.2006 0.1209 0.0824 0.0722 
Std  0.0681 0.1053 0.0981 0.0298 0.0418 0.0186 

 UF3 UF8 

Best 0.4389 0.3004 0.4085  0.2690 0.1558 0.1023 
Median 0.7141 0.5850 0.5474 0.3495 0.2358 012941 
Worse 1.1194 0.9261 0.6944 0.5315 0.3908 0.1247 
Mean 0.7261 0.5945 0.5707 0.3789 0.2555 0.1957 

 UF9 UF10 

Best 0.4050 0.1920 0.2765  1.9766 0.8789 0.4261 
Median 0.5660 0.2359 0.3731 3.4551 1.1262 0.4387 
Worse 0.7621 0.3244 0.4582 5.9429 1.6621 0.4411 
Mean 0.5884 0.2549 0.3793 3.7770 1.2215 0.4374 
Std  0.1173 0.0488 0.0584 1.2830 0.2236 0.0046 
 

Table 3 — Statistical results for SP on benchmark problems 

 Result of MOPSO Result of MOEA/D Result of NSSGO Result of MOPSO Result of MOEA/D Result of NSSGO 

 UF1 UF2 

Best 0.0153 2,5612E-04 0.0135  0.0372 0.0045 0.0038 
Median 0.0526 8.5626e-04 0.0195 0.0544 0.0101 0.0074 
Worse 0.1017 0.0082 0.0370 0.1469 0.0168 0.0139 
Mean 0.0576 0.0022 0.0229 0.0749 0.0104 0.0091 
Std  0.0289 0.0027 0.0080 0.0389 0.0039 0.0036 

 UF3 UF8 

Best 8.5622e-04 1.0002e-04 0.0133  0.3537 0.0269 0.0095 

Median 0.1271 2.0961e-04 0.0226 0.5987 0.0422 0.0321 
Worse 0.3971 0.0078 0.0941 1.1303 0.0991 0.1692 
Mean 0.1486 0.0017 0.0333 0.7304 0.0502 0.0493 
Std  0.1262 0.0026 0.0252 0.2765 0.0210 0..0317 

 UF9 UF10 

Best 0.5025 0.0191 0.1409  2.0817 8.9012e-04 0.0071 

Median 0.7249 0.0426 0.2774 3.4407 0.0409 0.0079 
Worse 1.4223 0.0700 0.6052 4.9718 0.1774 0.0110 
Mean 0.8363 0.0139 0.3587 3.5655 0.0552 0.0084 
Std  0.3323 0.0139 0.1770 1.0722 0.0515 0.0011 
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graphical representation of Pareto-optimal solutions 
obtained from each algorithm on UF2 is depicted in 
Fig. 1. Hence, it can be stated that the NSSGO 
algorithm provides better convergence on UF2 in 
comparison to all other algorithms. 
 

For UF3 Poblem:  
MOEA/D finds the best of best performance, 

whereas NSSGO finds the best of average performance 
and best of worse performance with respect to IGD. 
MOEA/D finds best in the best performance, best in 
average performance, and best in worse performance 
with respect to SP. Similarly, NSSGO finds best in the 
best performance, best in average performance and best 
in worse performance to MS for the UF3 problem. The 
graphical representation of Pareto-optimal solutions 
obtained from each algorithm on UF3 is depicted in 
Fig. 1. Hence, it can be stated that the NSSGO 
algorithm provides better convergence and best 
coverage on UF3 in comparison to all other algorithms. 
 

For UF8 Problem:  
NSSGO finds the best of best performance, best of 

average performance, and best of worse performance 
with respect to IGD. NSSGO finds best in the best 
performance, best in average performance, whereas 
MOEA/D finds best in worse performance with respect 
to SP. Similarly, NSSGO finds best in the best 
performance, best in average performance and best in 
worse performance to MS for the UF8 problem. The 

graphical representation of Pareto-optimal solutions 
obtained from each algorithm on UF8 is depicted in 
Fig. 1. Hence, it can be stated that the NSSGO 
algorithm provides better convergence and best 
coverage on UF8 in comparison to all other algorithms. 
 
For UF9 Problem:  

MOEA/D finds the best of best performance, best of 
average performance, and best of worse performance 
with respect to both in IGD and SP. Similarly, NSSGO 
finds best in the best performance, best in average 
performance and best in worse performance to MS for 
the UF9 problem. The graphical representation of 
Pareto-optimal solutions obtained from each algorithm 
on UF9 is depicted in Fig. 1. Hence, it can be stated 
that the MOEA/D algorithm provides better 
convergence on UF9 in comparison to other 
algorithms. 
 
For UF10 Problem:  

NSSGO finds the best of best performance, best of 
average performance, and best of worse performance 
with respect to all metrics such as IGD, SP, and MS. 
The graphical representation of Pareto-optimal 
solutions obtained from each algorithm on UF10 is 
depicted in Fig. 1. Hence, it can be stated that the 
NSSGO algorithm can provide superior convergence 
and best coverage on UF10 in comparison to all other 
algorithms. 

Table 4 — Statistical results for MS on benchmark problems 

 UF1 UF2 

 Result of MOPSO Result of MOEA/D Result of NSSGO  Result of MOPSO Result of MOEA/D Result of NSSGO 

Best 0.9969 0.8438 0.9843 0.9997 0.9423 0.9865 
Median 0.9850 0.5773 0.9558 0.9928 0.7732 0.9762 
Worse 0.6695 0.2375 0.8082 0.9090 0.4658 0.9293 
Mean 0.9447 0.5201 0.9233 0.9747 0.7170 0.9652 
Std  0.1023 0.2046 0.0582 0.0304 0.1724 0.0201 
 UF3 UF8 

 Result of MOPSO Result of MOEA/D Result of NSSGO  Result of MOPSO Result of MOGWO Result of NSSGO 

Best 0.7162 0.3688 0.9620 0.9995 0.9986 0.9999 
Median 0.3877 0.3240 0.8566 0.9953 0.9410 0.9995 
Worse 1.2911e-04 1.8857e-04 0.7796 0.9863 0.8076 0.9867 
Mean 0.3370 0.2190 0.8615 0.9944 0.9121 0.9983 
Std  0.2276 0.1500 0.0523 0.0037 0.0625 0.0045 
 UF9 UF10 

 Result of MOPSO Result of MOEA/D Result of NSSGO  Result of MOPSO Result of MOEA/D Result of NSSGO 

Best 0.9987 0.9503 0.9999 0.7908 0.6483 0.8165 
Median 0.9945 0.8258 0.9997 0.6310 0.5078 0.8164 
Worse 0.9732 0.6126 0.9894 0.2633 0.0447 0.8161 
Mean 0.9920 0.8106 0.9981 0.5685 0.4556 0.8164 
Std  0.0083 0.1006 0.0035 0.1584 0.1793 1.1064e-04 
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Fig. 1 — Obtained Pareto Optimal solution by MOPSO, MOEA/D, and NSSGO 
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So in overall, we have concluded that the NSSGO 
algorithm able to find superior convergence and best 
coverage in all four problems out of 6 six problems: 2 
in bi-objective and 2 in tri-objective problems 
whereas MOPSO finds its superior performance in 
one bi-objective and MOEA/D finds its superior 
performance in one tri-objective problem. 
 
Conclusions 

The proposed NSSGO algorithm was evaluated using 
three bi-objective and three tri-objective optimization 
problems of CEC 2009 and found effective and efficient 
as compared to MOPSO and MOEA/D. The 
performance of the algorithm is measured using the 
IGD, SP, and MS metric. From the experimental results, 
we have concluded that the NSSGO algorithm is able to 
find superior convergence and best coverage in 4 
problems out of 6 six problems. It can be summarized 
that NSSGO provides promising solutions to multi-
objective optimization problems. As a further study, we 
shall evaluate the multi-objective optimization problems 
of CEC2015 using NSSGO algorithm and also we shall 
try to improve the NSSGO algorithm to solve a many-
objective optimization problem. 
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