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The advent of computer vision and evolution of high-end computing in remote sensing images have embellish various 

researchers for unprecedented development in remotely sensed aerial images. The requirement to extract essential 

information stimulated anatomization of aerial images for its usefulness. Deep learning provides state of the art solutions for 

widely explored visual recognition system and has emerged as an evolutionary area, being applicable to large scale image 

processing applications. Convolutional Neural Networks (CNNs), an essential component of deep learning algorithms 

consists of increasing the depth and connections in the processing layers to learn various features of data at different abstract 

levels. In this paper, we present an outlook for classifying and extracting the features of aerial images using CNN. We 

propose a CNN architecture based on various parameters and layers for classification. CNN has been evaluated on two 

publicly available aerial data sets: UC Merced Land Use and RSSCN7. Experimental results show that the proposed CNN 

architecture is competent and efficient in terms of accuracy as performance evaluation parameter in comparison with 

conventional classifiers like Bag of Visual Words (BOVW). 
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Introduction 

The fast track evolution in remote sensing led to 

immense development in fostering techniques to 

precipitate remotely sensed aerial images with high 

resolution. Publically availability of satellite aerial 

images for research purpose instigated wide-ranging 

application areas including urban planning, terrain 

monitoring
1
, flood, surveillance

2
, agriculture

3
, etc. 

Thereby plugging demand for explicit analysis on 

aerial images to extract essential information for 

designing structured semantics tasks
4
 such as Scene 

based classification. With an insight to label scenes 

into Land use and land cover (LULC) classes
5
, scene 

based classification categorizes the class labels 

according to the representation of the land type such 

as highway, fields, etc.  Aerial images require high 

resolution data, demanding immense analysis to 

provide accurate classification. Spatial features are 

pre-eminent for learning and extraction in high 

resolution aerial images.  The challenge being 

extracting these perplexing spatial feature 

representations from high resolution aerial images.
6
 

Such classification requires require an assembly of 

essential core representations of the features in an 

intelligent machine learning system. The expansion of 

deep learning in the computer vision has been a 

breakthrough in machine learning.  

The demand of computer vision system is to yield 

essential internal representations through feature 

extractor known as features, the output of which is fed 

to a trainable classifier. These extracted features 

direct the system to solve classification problem into 

categories, independently of scale, illumination, 

position, or clutter. The exhaustive search to learn 

features has led to the growth of deep learning. Deep 

learning can be defined as a neural net consisting of 

several hidden layers and in comprehensive term, as a 

learning model facilitated with layered feature 

extraction.
7
 Deep learning architectures initialize with 

original feature as its input. It transforms these 

features into abstract features by extracting layer by 

layer traversing deeply into the multi-layered 

network, thereby, enhancing the performance of the 

net. In other words, these deep architectures are 

capable of extracting features and shaping them into 

abstract representations. Support Vector Machine 

(SVM)
8
, Bayesian networks

9
, Bag of Visual Words 

(BOVW)
5
, K-Nearest Neighbours (KNN) and many 

learning algorithms resolve the classification 

problem. However, the limitations include restriction 

on designing and developing feature extractor with 

poor generalization.  
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An image comprises of millions of pixels. To 

understand an image, one needs to comprehend how 

these pixels are clubbed together to create an image. 

Generally, the pixels are integrated into edglets, 

edglets into motifs, motifs into regions, regions into 

objects, and objects into scenes.
10

 Hence, a computer 

vision system requires having numerous trainable 

stages, one for each level representation in the feature 

hierarchy to perform an optimum classification. 

Convolutional Neural Networks (CNNs)
11–13 

came 

into counting while describing trainable multi-layer 

deep learning architectures. The input and output at 

each layer are defined as feature maps. Greater the 

number of multiple stages in a CNN, higher is the 

learning rate of the multi-level feature hierarchies. Its 

architecture provides distinctive characteristics that 

enable CNN to do minimal pre-processing task for 

performing operations like segmentation, feature 

extraction, classification, object recognition, etc. 

Unlike conventional pattern recognition approaches in 

which prior problem domain knowledge is required to 

select the precise algorithm, a simple knowledge of 

problem domain is sufficient to extract the features in 

case of CNN. Images are defined using local and 

global features such as textures, colour, illumination, 

etc. Implementation of CNNs enables the processing of 

adequate amount of training and classification required 

for aerial data. This minimizes the time, cost and 

computational consumption. CNNs have an extensive 

property of learning features from an unambiguous 

specified dataset with one modality and applying it 

other dataset of different modality with some additional 

training. Signifying a pre-trained CNN works better 

than a net trained from the scratch.
14

 

In this paper, we will explore the prospect of 
learning and classifying explicitly in deep neural 
networks i.e. CNN for classification of aerial images. 
CNN in combination with various layers such as 
normalization

15
, pooling, dropout, softmax, etc. have 

been implemented. The net being designed has 
limited number of layers, and each layer is designed 
with building blocks such as convolution, 
normalization, pooling, etc. Experiments are 
conducted on two benchmark aerial datasets with 
widely different characteristics i.e. UC Merced Land 
Use

5
 and RSSCN7

16
 datasets containing 2100 and 

2800 images respectively. The potential of the CNN is 
evaluated based on classification accuracy. 

The remainder of this paper is structured as 

follows: Section 2 reviews the literature. Section 3 

presents the detailed theory of the network model 

structure of CNN. In Section 4, the experiments and 

results have been discussed. Conclusion is presented 

in Section 5. 
 

Related Work 

Since the beginning of current decade there has 

been intense research on image classification through 

deep networks. The vast architecture of deep 

networks like CNNs made the researchers to provide 

emphasis on the use of suitable learning models. Deep 

learning techniques infused with SVM and regression 

framework were proposed.
7
 The framework integrated 

worked on joint spectral–spatial classification. 

Experiments showed an improved accuracy compared 

with other techniques like PCA. CaffeNet and 

GoogLeNet architectures of CNNs were 

implementation for aerial image classification.
17

 The 

network worked on minimizing design time and 

overfitting problems. The results summarized 

improved classification accuracy with additional 

training of networks with pre- trained larger dataset. 

CNN has been implemented for learning specific 

spatial features from aerial images with an objective 

of determining corresponding hierarchical structures 

in images.
18

 The layers were arranged systematically 

so that the initial five layers extracted the visual 

features while the last layer was accountable for 

classification purpose. An object-based classification 

on a convolution neural network (CNN) has been 

proposed.
13

 The classification was implemented in 

two-stages, GoogleNet architecture and NVidia Digits 

were used for training. The results indicated accurate 

identification to locate the regions in images which 

correspond to the categories on which the CNN was 

trained. However, the net can be enhanced by 

employing multi-GPU configuration to reduce 

computation time. ImageNet
19

 database was utilized 

to determine the effect of CNNs depth on its 

parameters like accuracy in the large-scale image 

recognition.
20

 In this work, the depth of the CNN was 

stretched to around 16–19 weight layers that provided 

satisfactory classification accuracy. Another deep 

learning-based classification was introduced based on 

vehicle detection and counting in aerial images while 

employing CNNs for regression of vehicle spatial 

density map across the aerial image.
21

 Experimental 

work done on Munich and Overhead Imagery 

Research datasets provided higher precision and recall 

rates. Another deep learning technique were used for 

feature extraction for scene classification and adapted 

feature selection as feature reconstruction.
16

 The 
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reconstructed features were further used as 

discriminative features for image representation. DBN 

enabled the reduction of reconstruction error and 

experiments validated the performance of the model. 

CNN framework was applied for 2-D cardiac 

magnetic resonance (MR) images from under sampled 

data for image reconstruction in real time 

application.
22

 Deep neural networks framework 

known as DeepID3 was proposed for face 

recognition.
2
 The framework was based on VGGNet

3
 

and GoogLeNet
23

 architectures. Genetic algorithm
24

 

was designing with deep neural networks.
25

 The 

exponential increase in CNN layers were optimized 

using genetic algorithm to efficiently traverse the 

large search space. Each component of individual 

layers was defined through training the net followed 

by evaluating its validation set that computed its 

recognition accuracy. 

An unsupervised learning with multi-stage 

hierarchies was proposed that worked on sparse 

convolutional features.
26

 The model controlled the 

redundancy between feature vectors at neighbouring 

locations by providing highly di-verse filters through 

convolutional training. An improved efficiency of the 

over-all visual representation was achieved. A greedy 

layer-wise unsupervised frame-work coupled with 

single-layer deep CNN was implemented.
27

 The 

frame-work engrained on sparse representations of 

multi and hyperspectral imagery. The results 

illustrated dynamic performance of the framework in 

very high-resolution images with diverse 

classification scenarios. An aerial scene classification 

using dense low-level feature sets has been 

described.
28

 Unsupervised learning on unlabelled 

features sets operates on encoding, pooling and 

extraction to generate image representations.  

In brief we can approximate that there is scope of 

exploring deep learning models for feature extraction 

and classification based on the image under study in 

many aspects. As observed different architectures 

have been proposed with varying accuracy parameters 

and different classification techniques. The research 

involved in this paper explores CNNs in depth with 

diverse architecture and number of layers to achieve 

better classification performance. 
 

Proposed Classification Framework 

After going through the extensively detailed 

literature and understanding the different CNN 

architectures proposed and implemented by different 

researchers for a variety of applications, we propose a 

classification framework comprising of various CNN 

layers shown by Fig. 1.  It has been observed that the 

variation in the order of layers and careful selection of 

parameters as per system configuration and output 

requirement impacts the complexity and performance 

of the classification system. 

Here we propose a CNN based classification 

framework comprising of six layers: the first three are 

convolution layers and followed by fully-connected 

and softmax layers. The output of softmax layer is fed 

to classification layer which produces a distribution 

over multiple class labels as defined. The framework 

has been experimentally analysed using UC Merced 

Land Use and RSSCN7 datasets. The concept of 

multinomial logistic regression is extended by the 

proposed CNN which maximizes the average across 

training cases of the log-probability of the correct 

label under the prediction distribution.
29

 It is achieved 

by using mini-batch gradient descent with 

momentum. The kernels
29

 of all three convolutional 

layers are interconnected with all other kernel maps in 

 
 
Fig. 1 — Proposed CNN architecture with six layers: the initial three are convolutional, followed by fully-connected and softmax; The 

output of the softmax layer is fed to classifier layer that produces the probability distribution over the possible class labels 
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the subsequent layer. The nodes in the fully-

connected layers are connected to all nodes in the 

previous layer. Batch normalization layers follow the 

first and second convolutional layers. Max-

pooling
11,31 

layers follow both normalization layers 

and the third convolutional layer. The ReLU
32

  

non-linearity layer is applied within all the layers to 

blend non-linearity into the network, the mathematical 

form of which has been defined in Eq. 3. To begin 

with, the first convolution layer filters the input 

image, which can be of varied size depending on the 

dataset being used. 

The feature map generated by learning through the 

first and second convolution layer while training the 

network is illustrated by Fig. 2. It comprises of 

strongest activation channels with each kernel 

representing feature specifications. The features of 

various individual class labels are defined and 

identified by extracting layer by layer each 

convolutional kernel. The second convolutional layer 

includes max-pooling and batch-normalized 

operations that takes the output of the first 

convolutional layer as input and filters it kernels.  

The third convolutional layer includes max-pooling 

and batch-normalized operations that have kernels 

connected to the outputs of the former convolutional 

layer. Subsequently, the fully-connected layer has all 

nodes connected to each other from the previous 

convolution layer. The output of fully-connected  

layer is then distributed to the softmax layer on  

which dropout has been applied that consists of 

setting to zero the output of each hidden node  

with probability 0.5.The dropout layer is added to 

remove the irrelevant nodes in the net thereby the 

reducing the overall size of CNN. Finally, the 

network has the classification layer linked with 

softmax layer that provides the probability 

distribution over the possible classes. 

Preliminary investigations were performed in 

which the CNN model was run multiple times giving 

different range of parameters. Based on different 

range of values, the proposed model is trained with 

generated optimum values thereby reducing training 

error. The training is done using stochastic gradient 

descent with a batch size of 256 examples, 

momentum of 0.9, and weight decay of 0.0002. The 

weight decay is applied to reduce training error. Also, 

the training was regularized by weight decay (the L2 

penalty multiplier set to 10−4) and dropout 

regularization for the fully-connected and softmax 

layers (dropout ratio set to 0.5). The learning rate is 

initially set to 1.0 e−4, and then decreased by a factor 

of 10 when the validation set accuracy stopped 

improving. Stochastic gradient descent has been used 

as learning function during the network training with 

50 epochs respectively. Our objective is to achieve 

high precision rate for all the classes so that the 

network can be used for aerial image classification. 

To obtain the fixed-size CNN input images, they are 

randomly cropped from rescaled training images. The 

deployment of our proposed CNN architecture for 

classification of aerial images for datasets UCMerced 

Land Use and RSSCN7 respectively are listed in 

Table 1. The configuration details of various layers 

used in the proposed CNN has been described in 

Table 1. The layers comprise of 3 × 3 convolutions 

followed by rectified linear unit (ReLU), max-pooling 

and batch normalization respectively.  A 50% dropout 

ratio is applied along with softmax and classification 

layer. The size of the output of classification layer is 

set to 21 and 7 depending upon the number of classes 

for the two varied datasets. 

 
 

Fig. 2 — A visualization of feature maps learned by the 

convolution layer in our proposed architecture. 

Table 1 — Detailed architecture of the proposed CNN 

Layers Configuration 

Layer 1 Conv  

ReLU 

[5 × 5 × 64]  

Max (0, x) 

Layer 2 Conv  

Max Pooling 

ReLU 

[3 × 3 × 128] 

[2 × 2] 

Max (0, x) 

Layer 3 Conv  

Max Pooling 

Batch Normalization 

ReLU 

[3 × 3 × 256] 

[2 x 2] 

Alpha = 0.01, beta = 0.5 

Max (0, x) 

Layer 4 Fully Connected 

Max Pooling 

ReLU 

Weight Size: [1158, 256] 

[2 × 2] 

Max (0, x) 

Layer 5 Softmax 

Dropout 

ReLU 

Weight Size: [256, 128] 

Activation: 50% 

Max(0, x) 

Layer 6 Classification 

Dropout 

ReLU 

Weight Size: [128, 21] / [128, 7] 

Activation: 50% 

Max (0, x) 
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Results and Discussion 
On the basis of the experiment being conducted, 

the output has been generalized. The significant issues 

involved with wide diversity of input data 

dimensionality, number of classes, and amount of 

available labelled data for feature extraction in land-

use classification for aerial images are being studied. 

The prime focus of the experiment is to address the 

relevant issues such as impact of number of classes, 

depth of CNN layers and the learned hierarchical 

representations while training the network. The 

experiment is setup on Intel(R) Core (TM) i7-4770 

CPU @3.40 GHz processor with 6 GB RAM. In each 

experiment we have selected randomly 70% images 

per category for training and rest for testing. The 

platform used to implement CNNs is MATLAB 

R2018a on Windows 10. 
 

Data Collection 

We validate the aerial scene classification on two 

datasets i.e. UCMerced Land Use and RSSCN7 dataset 

respectively. In UCMerced, the data set comprises of 

manually extracted images from the USGS National 

Map Urban Area Imagery collection. It comprises of 

twenty-one aerial scene categories with 256 × 256 

colour images with 1-ft/pixel resolution. The images in 

this dataset cover overlapping categories and each 

category contains 100 images thereby creating a dataset 

of 2100 images. Few ground truth images for  

each twenty-one land-use categories are represented by 

Fig. 3. The extensive categories of the dataset are 

defined as follows: agriculture, airplane, baseball 

diamond, beach, building, chaparral, dense residential, 

forest, freeway, golf course, harbor, intersection, 

medium residential, mobile home park, overpass, 

parking lot, river, runway, sparse residential, storage 

tanks, and tennis court respectively.  

The aerial data set RSSCN7 contains 2800 remote 

sensing aerial images that comprises of seven 

categories, i.e., grass, forest, farm, parking lot, 

residential region, industrial region, and river and 

lake. There are around 400 images collected in each 

category via Google Earth. Each image consists  

of 400 × 400 pixels. This data set is reasonably 

challenging due to the wide diversity of overlapping 

scene images that are captured under varying weather 

conditions. Some ground truth RSSCN7 images for 

seven categories are represented by Fig. 4. 
 

Observation 

UCMerced Land Use and RSSCN7 datasets are 

adopted to test the performance of the system in terms 

of classification accuracy. Here we have trained the 

proposed CNN for 30 epochs and calculated the 

accuracy and loss profile of the classification system 

for both datasets, shown by Fig. 5.While training the 

proposed CNN, it has been observed that there is a 

smooth increasing accuracy i.e. with the increase in 

 
 

Fig. 3 — UCMerced ground truth data set contains 100 images for each 21 category, from which four samples per category has been 

shown. The following are the labelled category: a Agriculture, b Airplane, c Baseballdiamond, d Beach, e Building, f Chaparral, g Dense 

residential, h Forest, i Freeway, j Golfcourse, k Harbor, l Intersection, m Medium residential, n Mobile homepark, o Overpass, p 

Parkinglot, q River, r Runway, s Sparse residential, t Storagetanks, u Tenniscourt, respectively 

 
 

Fig. 4 — Sample images from the RSSCN7 ground truth  

data set containing 400 images for each 7 categories, from which 

four samples per category has been shown. The following are  

the labeled category: a Grass, b Field, c Industry, d Riverlake,  

e Forest, f Residential, g Parking, respectively 
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number of epochs, the accuracy increases. The 

optimum performance of CNN for has been achieved 

at 29
th
 epoch with an accuracy of 92.65% with loss of 

0.1589 for UCMerced Land Use and 87% accuracy 

with loss 1.7503 for RSSCN7 as shown in the 

graphical profile of accuracy and loss respectively. 

Also, experiments for performance parameters over 

classical classification techniques like Latent Dirichlet 

Allocation (LDA)
33

, Vector of Locally Aggregated 

Descriptors (VLAD)
34

, Spatial Pyramid Matching 

(SPM)
35

, BOVW, Improved Fisher kernel (IFK)
36

 for 

both datasets are computed. The performance of 

proposed CNN architecture in terms of accuracy with 

other classical classification techniques is concluded 

by Table 2. According to the table, training the 

datasets with proposed CNN architecture accuracy of 

76.60% and 74.56% is achieved which have vividly 

increased the performance of the classification 

framework. The accuracy rates for LDA, VLAD, 

SPM, IFK and BOVW as presented in Table 2 range 

from 61% – 77%. As observed, the CNN architecture 

showed high performance with increased accuracy 

compared to classical classification techniques. We 

can observe that the performance of UCMerced Land 

Use dataset is slightly higher than the RSSCN7 

dataset reason being the former dataset have a greater 

number of categories than the later one. Hence, it can 

be inferenced from the experimental results that 

greater the number of categories and deeper the 

number of layers is, higher is the net performance. 

However, increasing width of layers caused 

overhead as it takes more time for processing due to 

which the size of CNN is limited. Also, with more 

classes in UCMerced Land Use dataset, there is 

quadratic time hiked computation time for RSSCN7 

 
 
Fig. 5 — Graphical profiles for accuracy and loss during training the proposed CNN for (a) UCMerced Land Use and (b) RSSCN7 

datasets respectively 
 

Table 2 — Experimental results of CNN architectures over 

UCMerced Land Use and RSSCN7 testing datasets 

S.No. Classifier UCMerced Land Use (%) RSSCN7 (%) 

1. LDA 64.72 71.36 

2. VLAD 75.38 74.42 

3. BOVW 78.25 76.43 

4. SPM 61.63 64.25 

5. IFK 79.81 77.82 

6. Proposed CNN 92.65 87.00 
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dataset. Hence, due to high computational time of 

CNN with run-time being major concern in CNN 

applicability, few layers have been attached in the 

proposed CNN architecture. 

 

Conclusions 

This paper exploits the structure of deep 

convolution networks. We have proposed a CNN 

architecture comprising of various layers and have 

implemented and trained it from the scratch. The 

performance evaluation is done on two challenging 

datasets UCMerced Land Use and RSSCN7. The 

experimental results validated utility over classical 

classification techniques. It has been observed that 

adding layers into the CNN improves the 

classification accuracy substantially. Further, the 

deeper the network is, higher is the classification 

performance. However, limited system resources like 

computing power and time has limited our net in 

terms of how far it could have gone for training each 

net. Due to which we have implemented the net for 

few epochs for each net before it plateaued. In the 

future work, the experimental analysis can be 

extended using graphics processing units (GPU) to 

accelerate the feature learning process. Further this 

approach shall be extended to perform texture-based 

object detection with high-level spatial information as 

part of the feature extraction process. 
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