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A multi-objective scheduling problem with specified release times and due dates for individual tasks is analysed in this 

study. Distinct tardiness value of each task j comprises the part of the objective, while it is desired to identify all non-

dominated solutions. Tardiness values for a total number of n tasks complete a single solution making it an n-objective 

scheduling problem. Tardiness is treated here as a task specific objective, being different in the usual scheduling context.  

A branch and bound procedure is proposed for individual tardiness of tasks in multi-objective contexts. The procedure is 

illustrated with an example. Active schedule enumeration scheme with depth-first strategy for branching is used in 

branching while two different bounding schemes are tested. However, an improved bounding scheme to find better-quality 

need to be developed. Procedure is found to perform well on small scale problems. For an n-objective problem like this, a 
more robust data structure may further improve the performance of the procedure. 
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Introduction 

Scheduling is concerned with a set of scarce 

resources to dynamically allocate to competing tasks. 

In manufacturing context, these resourcing are usually 

machines on the shop floor. At the shop floor, these 

tasks are the jobs waiting for the machines within a 

dynamically changing environment under various 

constraints and with certain desired objectives. While 

allocating a task to a resource at a specific time slot, 

one is actually identifying the optimal or near-optimal 

start time for the processing of each task. The issue of 

assigning an individual task to a machine does not 

arise for the case of a single machine problem. Each 

task is to be processed on the same machine and it is 

desired to sequence the tasks and to find an optimal 

starting time for each task with desired objectives. 

In the case of single machine problem, a set of 

competing tasks (J) is to be scheduled on one 

machine. Each of these tasks has certain attributes that 

need to be considered for their potential place in the 

desired schedule. Among these attributes, release 

date, processing time and due date are primitive 

attributes. Release date of a task j∈ J is noted as rj and 

reflects the time for the availability of task for the 

machine, to consider it as a potential candidate for 

scheduling. Processing time pj of a task j is the 

maximum time (value-added) that can be spent by 

that task on machine in an uninterrupted manner. Due 

date dj of a task j is a limiting value on the finish time 

or else considered to be tardy and has associated cost 

(non-value-added). Completion time Cj of a task j is 

the actual time that tasks finishes its processing and 

releases the machine. These definitions are implied 

for single machine scheduling in a non-preemptive 

processing environment. 

With these definitions and the desired objectives, 

we have a 1|rj|#{Tj} problem, hereinafter referred as 
P. P is a single machine n-objective combinatorial 
optimization problem where n is the total number of 
tasks (n =|J|). P can be deterministic in nature or 
stochastic. In the deterministic case, processing time 
and the release date of each task is fixed. If all of this 

information is known apriori, it is static in nature. In 
our study, we speak of a problem that is dynamic and 
stochastic in nature. This means that schedule is 
recalculated and processed dynamically while the new 
tasks are appearing in the system at random intervals 
of time with initially unknown processing times. The 

randomness in these processes follows certain 
playability laws.  

Solving shop scheduling problems have remained 

active area among researchers for many reasons. This 
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interest has led to a plethora of methods with 

achievements of various degrees. An exact processing 

order of the tasks is achieved by gradually building up 

the schedule in a constructive algorithm. This uses 

simple rules and procedures. Priority dispatching rules 

are constructive in nature. These have found an 

extensive use in industry, primarily because of 

inherently reduced computational complexity, 

implementation ease and transparency in its 

processing. These are able to find an optimal solution 

for a few of single machine problems. Lawler’s 

algorithm and Moore’s algorithm are some classical 

scheduling algorithms for single machine problem. 

Elimination of non-optimal schedules from a list of all 

possible schedules prepared by enumerating is the 

other way of finding optimal or near optimal 

solutions. These are termed as enumeration methods 

such as dynamic programming and branch and  

bound method. 

One of the approaches used to limit the number of 
possible solutions is to use dominance rule. This acts 
as an additional constraint to the initial problem. 
However, it does not have any effect on the value of 
the optimum. Emmons

1
 has listed some robust 

dominance rules. These rules form the basis of many 
of the exact methods that are used for solving 1||ΣjTj 
problem. Chu & Portmann

2
 defined a dominant subset 

of schedules for 1|rj|ΣjTj. Using these, many 
approximate scheduling algorithms were proposed. 
Using a new decomposition rule, Szwarc & 
Mukhopadhyay

3
 devised a branch and bound 

algorithm for 1||ΣjTj. Later, Szwarc et al.
4,5

 worked 
out on an algorithm of enhanced performance by 
analyzing the impacts of deletion of lower bounds. 
Decision theory can also be employed to find the 
impact of preferring one task to schedule ahead of 
others

6
. They used stronger decomposition rules 

resulting in an improved performance of the early 
algorithm. Baptiste et al.

7
 worked on branch and 

bound procedure by generalizing the set of dominance 
rules and found much improved lower bounds for 
1|rj|ΣjTj. Loukil et al.

8
 provided a literature review on 

single machine scheduling problem. They proposed  
a multi-objective method based on simulated 
annealing.

9
 

In literature on single machine scheduling, the 

method that is most widely used to solve the case of 

multi-objective is ε-constraint method.
10

 This method 

employs the minimization of one of the objectives 

while keeping an upper bound constraint on each of 

the other objectives. Nelson et al.
11

 and Pinedo & 

Chao
12

 made use of dominance rules to develop a 

branch and bound algorithm. They identified some 

non-dominated schedules for the same problem using 

these dominance rules. By using a similar branch and 

bound algorithm, Nelson et al.
11

 enumerated a Pareto 

optimal for 1||E(C/U). Later, Kiran & Unal
13

 extended 

this work by providing some general conditions for 

these optima. Lin
14

 proposed a posteriori algorithm 

for 1||#(C, T), which relied on principles of dynamic 

programming. They included some new dominance 

rules in their proposed algorithm. 
 

Branch and bound procedure 

Among the exact approaches used to solve 

scheduling problems, one of the most notable 

methods is the branch and bound method
15

. Various 

enumeration strategies are adopted in Branch and 

Bound (B & B) algorithms in order to dynamically 

construct a tree structure of schedules. This tree 

structure represents a solution space of all viable 

sequences. Search of the desired solution(s) is guided 

by repetitive branching and various bounding 

schemes. Topmost node of the tree structure 

represents the root problem, which is the original 

problem with the complete feasible region. This is 

taken as the starting point of the solving process for 

the root problem. 

The branching procedure where problem is split 

into two or more sub-problems is illustrated in Fig 1. 

The union of these sub-problems is always the parent 

node problem. At different levels of the search tree, a 

node represents a partial solution of the node problem 

at that level. Recursively, the algorithm is applied to 

the sub-problems at different levels. Progress of the 

search is determined from an active node, which is 

unselected yet. In this way, subsequent set of nodes 

are determined. To compute the lower and upper 

bounds, bound procedures are used. The quality of the 

best schedule found during the search is represented 

by the upper bound. On the other hand, best possible 

quality at a given node is reflected by the lower bound 

at that node. In solving combinatorial optimization 

problems, where the search space is exponentially 

huge, these bounds play a vital role to limit the search 

space and guide the direction of the search in fruitful 

area of the search space. Initiating from the root node, 

for each of the branched sub-problem, procedures of 

lower-bounding and upper-bounding are applied 

iteratively. Limiting of the search space is obtained  

by discarding a node (and hence all sub-problem 

emanating from that node), for which the lower bound 



SHAHZAD et al.: A SINGLE MACHINE SCHEDULING PROBLEM WITH INDIVIDUAL JOB TARDINESS 

 

 

379 

exceeds the best-the known value of the best feasible 

solution. A local optimal may be found in the sub-

space feasible region of that node but no globally 

optimal solution can exist in that subspace. This 

iterative solving, bounding and pruning process 

continue till all the nodes are exhausted. Finding an 

optimal solution for a sub-problem, merely represents 

one of the many feasible solutions for the root 

problem and not necessarily a globally optimal 

solution for the root problem. 

The procedure of branch and bound can easily be 

applied in the case of a single objective optimization 

problem. In this process, bounds can be computed by 

applying certain relaxations to the original problem. 

For instance, construction of a branch and bound 

procedure for 1|rj|Lmax may be as follows. First check 

the eligibility of a task for a particular position is 

checked in the branching procedure. For this, let task 

c is considered as a candidate for position k. This is 

possible if and only if rc<min(max(t, rl) + pl)., where 

Jl∈J. J represent the set of tasks that are not yet 

scheduled while t denotes the completion time of the 

previous task on the machine. Pruning of the node 

from the tree is applied, if any job task does not 

satisfy this inequality. 

Applying preemptive EDD (Earliest Due Date) rule 

is one of the many possible relaxations that can be 

applied to compute the bounds. It is known that the 

preemptive EDD rule is able to find an optimal 

schedule for 1|rj, prmp|Lmax. This problem represents a 

relaxation of 1|rj|Lmax. Lower bound is calculated at 

each node and if the lower bound for a node exceeds 

the upper bound (found previously), then no further 

branching of this node is considered.
11

 

In contrast to single objective scheduling problems, 

where one optimal schedule is to be found, multi-

objective branch-and-bound scheduling procedures 

look for the Pareto front of schedules (in fact, for each 

Pareto point in the objective space, one schedule is to 

be found). Therefore, instead of a single schedule, a 

set of non-dominated schedules found are kept at each 

step. Furthermore, from a particular node in the 

search tree, it is possible that many Pareto optimal 

schedules, reachable from that node, are existent 

unlike the single-objective case. Hence, a set of lower 

bounds is associated with a single node instead of a 

single bound. The generalization of the concepts of 

bounds is the bound sets, that can be adapted in multi-

objective optimization problems. 

For the success of any branch and bound 

procedure, quality of bounds is vital. For the case of 

multi-objective optimization problems, ideal point  

y
I
 and nadir point y

N
, with y

I
<y<y

N
 are well-known. 

Ideal point represents a lower bound. Nadir point  

y
N
 represents the upper bound on the value of any 

efficient point. However, it is unfortunate that these 

bounds are not very effective, being quite distant from 

the non-dominated schedules. Applying the concept 

of bound sets, local ideal points represent a set of 

lower bounds while the local nadir points represent 

the set of upper bounds. One can derive these local 

ideal and local nadir points from supported solutions 

adjacent to each other in the objective space. Now the 

application of this branch and bound procedure on P 

is presented in the next section. 

 

Individual Task Tardiness Enumeration 

With the execution of n tasks on a single machine 

and having the objective to minimize the tardiness of 

each task independently, one comes across an 

enumerative n-objective optimization problem. 

However, there is a strong coupling among the 

individual task tardiness values. Enumerating these 

tardiness values Tj for all j tasks as performance 

 
 

Fig. 1 — Multi-objective branch and bound tree of active schedules 
 



J SCI IND RES VOL 79 MAY 2020 

 

 

380 

measure makes the problem as dynamic n-objective 

optimization problem. Note that, by setting ∀j, dj= 0, 

1|rj|#{Cj} becomes a special case of individual task-

tardiness-enumeration problem. As a generic notation 

for single machine problem, 1||#(f1, ..., fK), any task 

related objective is enumerated to find a non-

dominated solution. In order to construct pareto 

optima, the algorithm needs to enumerate all the 

solutions. It is evident from the notation representing 

a posteriori resolution contexts.
16

 As the number of 

objectives are dynamic according to the number of 

tasks appearing in the system, enumerative notation of 

#{Tj} is employed. This notation is representing the 

individual task tardiness as part of the objective. This 

means that the concept of dominance of the schedules 

is to be used here. We find the set of all non-

dominated schedules of this scheduling problem. To 

find these non-dominated schedules for P, we used a 

branch and bound procedure. For the enumeration and 

branching, we have used active schedule generation 

procedure with depth first strategy for generation of 

the active nodes. 

We have employed two bounding schemes. As a 

node represents a partial schedule, we solve instances 

of the problem 1|rj, prmp|#Tj at each node in the first 

bounding scheme. We obtain the set of lower bounds 

for the original problem as the tardiness for all n 

tasks. If the tardiness value is not dominated the prior 

lower bound set, we can prune the node. Here we 

intrinsically assume that the corresponding sub-

problem of a node having its dominated schedules are 

themselves dominated. Local ideal points are used in 

the other bounding scheme. We illustrate the 

procedure in Fig.1 for a 1|rj|#{Tj} problem listed in 

Table 1. At each stage during the execution of the 

procedure, all the partial and complete schedules are 

listed in Table 2. Two possible branches (active) can 

be seen at the root node (*,*,*,*). At this node, both 

the branches are explored because we have a non-

dominated schedule with a bound of (0,5,4,0). Despite 

the fact that the nodes 20–23 are not explored by the 

procedure (as their root node 19 is dominated), in 

Table 2, we have listed these nodes for the sake of 

clarity. This is evident from Fig. 1 as well. 

Subsequently, for the problem in Table 1, all the non-

delay schedules are given in Fig. 2. All the active, but 

not non-delay, schedules are listed in Fig. 3. A total of 

12 schedules are identified as active whereas a total of 

8 schedules are non-dominated. 

 

Discussion 

Though seems surprising, but not unusual that in 

practice, the single machine problem arises quite 

frequently. For example, an obvious one is a single 

processor non-time-sharing computer for processing 

of tasks awaiting service. Then, we have other 

instances of its application, where we can split large 

problems in complex plants to act as single machine 

Table 1 — A 1|rj|# {Tj} problem P 

j rj  pj  dj  

1 0 4 8 

2 1 2 12 

3 3 6 11 

4 5 5 15 

Table 2 — Node listing for branch and bound procedure 

Node 

number 
Node 

Number of 

branches 
Tardiness Dominated? 

1 (*,*,*,*) 2 (0,5,4,0) N 

2 (1,*,*,*) 3 (0,5,4,0) N 

3 (1,2,*,*) 2 (0,0,6,1) N 

4 (1,2,3,*) 1 (0,0,1,7) D 

5 (1,2,3,4) 0 (0,0,1,7) D 

6 (1,2,4,*) 1 (0,0,6,1) N 

7 (1,2,4,3) 0 (0,0,6,1) N 

8 (1,3,*,*) 2 (0,5,0,5) N 

9 (1,3,2,*) 1 (0,0,0,7) N 

10 (1,3,2,4) 0 (0,0,0,7) N 

11 (1,3,4,*) 1 (0,5,0,5) N 

12 (1,3,4,2) 0 (0,5,0,5) N 

13 (1,4,*,*) 2 (0,6,5,0) N 

14 (1,4,2,*) 1 (0,0,7,0) N 

15 (1,4,2,3) 0 (0,0,7,0) N 

16 (1,4,3,*) 1 (0,6,5,0) N 

17 (1,4,3,2) 0 (0,6,5,0) N 

18 (2,*,*,*) 3 (0,0,7,2) N 

19 (2,1,*,*) 2 (0,0,7,2) D 

20 (2,1,3,*) 1 (0,0,2,8) D 

21 (2,1,3,4) 0 (0,0,2,8) D 

22 (2,1,4,*) 1 (0,0,7,2) D 

23 (2,1,4,3) 0 (0,0,7,2) D 

24 (2,3,*,*) 2 (5,0,0,8) N 

25 (2,3,1,*) 1 (5,0,0,8) N 

26 (2,3,1,4) 0 (5,0,0,8) N 

27 (2,3,4,*) 1 (10,0,0,4) N 

28 (2,3,4,1) 0 (10,0,0,4) N 

29 (2,4,*,*) 2 (6,0,9,0) N 

30 (2,4,1,*) 1 (6,0,9,0 D 

31 (2,4,1,3) 0 (6,0,9,0) D 

32 (2,4,3,*) 1 (12,0,5,0) N 

33 (2,4,3,1) 0 (12,0,5,0) N 
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problem. For instance, to make a single colour in 

paint manufacture, the entire plant may be employed 

at a time. Finally, we have a bottleneck machine in a 

multi-machine complex, where the concept of single 

machine is used to decompose a large problem. 

Resolution of relatively complex scheduling problems 

is often achieved by the study of such a kind of  

single machine problems. Hence this can be treated  

as a relaxed version of a complex problem,  

where relaxation is a method in which a strict 

requirement imposed on the problem is temporarily 

removed, by either substituting for it another  

more easily handled requirement or else dropping it 

completely. 
 

Conclusions 

In this work, we present an n-objective enumerative 

scheduling problem represented as 1|rj|#{Tj}. 

Individual task tardiness makes part of the objective 

value. We have proposed a branch and bound 

procedure where active schedule generation is used for 

the enumeration during branching. We used depth first 

strategy for the tree exploration and two distinct 

bounding schemes to find lower bound set. This study 

has the main perspective to reduce the search space by 

finding a set of dominance rules in the case of a single 

machine problem. However, in order to enhance the 

performance of the procedure even for the case of a 

single machine with n-objectives. 
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