

Journal of Scientific & Industrial Research

Vol. 79, May 2020, pp. 377-382

A Single Machine Scheduling Problem with Individual Job Tardiness

based Objectives

Atif Shahzad
1
*, Waqar Ahmed Gulzar

1
 and Aeysha Shahzad

2

1Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
2Independent Researcher

Received 30 April 2019; revised 21 November 2019; accepted 21 March 2020

A multi-objective scheduling problem with specified release times and due dates for individual tasks is analysed in this

study. Distinct tardiness value of each task j comprises the part of the objective, while it is desired to identify all non-

dominated solutions. Tardiness values for a total number of n tasks complete a single solution making it an n-objective

scheduling problem. Tardiness is treated here as a task specific objective, being different in the usual scheduling context.

A branch and bound procedure is proposed for individual tardiness of tasks in multi-objective contexts. The procedure is

illustrated with an example. Active schedule enumeration scheme with depth-first strategy for branching is used in

branching while two different bounding schemes are tested. However, an improved bounding scheme to find better-quality

need to be developed. Procedure is found to perform well on small scale problems. For an n-objective problem like this, a
more robust data structure may further improve the performance of the procedure.

Keywords: Group scheduling, Multi-objective optimization, Job shop, Branch and bound, Dominance rule

Introduction

Scheduling is concerned with a set of scarce

resources to dynamically allocate to competing tasks.

In manufacturing context, these resourcing are usually

machines on the shop floor. At the shop floor, these

tasks are the jobs waiting for the machines within a

dynamically changing environment under various

constraints and with certain desired objectives. While

allocating a task to a resource at a specific time slot,

one is actually identifying the optimal or near-optimal

start time for the processing of each task. The issue of

assigning an individual task to a machine does not

arise for the case of a single machine problem. Each

task is to be processed on the same machine and it is

desired to sequence the tasks and to find an optimal

starting time for each task with desired objectives.

In the case of single machine problem, a set of

competing tasks (J) is to be scheduled on one

machine. Each of these tasks has certain attributes that

need to be considered for their potential place in the

desired schedule. Among these attributes, release

date, processing time and due date are primitive

attributes. Release date of a task j∈ J is noted as rj and

reflects the time for the availability of task for the

machine, to consider it as a potential candidate for

scheduling. Processing time pj of a task j is the

maximum time (value-added) that can be spent by

that task on machine in an uninterrupted manner. Due

date dj of a task j is a limiting value on the finish time

or else considered to be tardy and has associated cost

(non-value-added). Completion time Cj of a task j is

the actual time that tasks finishes its processing and

releases the machine. These definitions are implied

for single machine scheduling in a non-preemptive

processing environment.

With these definitions and the desired objectives,

we have a 1|rj|#{Tj} problem, hereinafter referred as
P. P is a single machine n-objective combinatorial
optimization problem where n is the total number of
tasks (n =|J|). P can be deterministic in nature or
stochastic. In the deterministic case, processing time
and the release date of each task is fixed. If all of this

information is known apriori, it is static in nature. In
our study, we speak of a problem that is dynamic and
stochastic in nature. This means that schedule is
recalculated and processed dynamically while the new
tasks are appearing in the system at random intervals
of time with initially unknown processing times. The

randomness in these processes follows certain
playability laws.

Solving shop scheduling problems have remained

active area among researchers for many reasons. This

——————

*1Author for Correspondence Email: mmoshtaq@kau.edu.sa
2Author contributed for part of the work while she was affiliated

with Univesrité de Nantes, France. (http://oro.univ-nantes.fr/)

http://oro.univ-nantes.fr/

J SCI IND RES VOL 79 MAY 2020

378

interest has led to a plethora of methods with

achievements of various degrees. An exact processing

order of the tasks is achieved by gradually building up

the schedule in a constructive algorithm. This uses

simple rules and procedures. Priority dispatching rules

are constructive in nature. These have found an

extensive use in industry, primarily because of

inherently reduced computational complexity,

implementation ease and transparency in its

processing. These are able to find an optimal solution

for a few of single machine problems. Lawler’s

algorithm and Moore’s algorithm are some classical

scheduling algorithms for single machine problem.

Elimination of non-optimal schedules from a list of all

possible schedules prepared by enumerating is the

other way of finding optimal or near optimal

solutions. These are termed as enumeration methods

such as dynamic programming and branch and

bound method.

One of the approaches used to limit the number of
possible solutions is to use dominance rule. This acts
as an additional constraint to the initial problem.
However, it does not have any effect on the value of
the optimum. Emmons

1
 has listed some robust

dominance rules. These rules form the basis of many
of the exact methods that are used for solving 1||ΣjTj
problem. Chu & Portmann

2
 defined a dominant subset

of schedules for 1|rj|ΣjTj. Using these, many
approximate scheduling algorithms were proposed.
Using a new decomposition rule, Szwarc &
Mukhopadhyay

3
 devised a branch and bound

algorithm for 1||ΣjTj. Later, Szwarc et al.
4,5

 worked
out on an algorithm of enhanced performance by
analyzing the impacts of deletion of lower bounds.
Decision theory can also be employed to find the
impact of preferring one task to schedule ahead of
others

6
. They used stronger decomposition rules

resulting in an improved performance of the early
algorithm. Baptiste et al.

7
 worked on branch and

bound procedure by generalizing the set of dominance
rules and found much improved lower bounds for
1|rj|ΣjTj. Loukil et al.

8
 provided a literature review on

single machine scheduling problem. They proposed
a multi-objective method based on simulated
annealing.

9

In literature on single machine scheduling, the

method that is most widely used to solve the case of

multi-objective is ε-constraint method.
10

 This method

employs the minimization of one of the objectives

while keeping an upper bound constraint on each of

the other objectives. Nelson et al.
11

 and Pinedo &

Chao
12

 made use of dominance rules to develop a

branch and bound algorithm. They identified some

non-dominated schedules for the same problem using

these dominance rules. By using a similar branch and

bound algorithm, Nelson et al.
11

 enumerated a Pareto

optimal for 1||E(C/U). Later, Kiran & Unal
13

 extended

this work by providing some general conditions for

these optima. Lin
14

 proposed a posteriori algorithm

for 1||#(C, T), which relied on principles of dynamic

programming. They included some new dominance

rules in their proposed algorithm.

Branch and bound procedure

Among the exact approaches used to solve

scheduling problems, one of the most notable

methods is the branch and bound method
15

. Various

enumeration strategies are adopted in Branch and

Bound (B & B) algorithms in order to dynamically

construct a tree structure of schedules. This tree

structure represents a solution space of all viable

sequences. Search of the desired solution(s) is guided

by repetitive branching and various bounding

schemes. Topmost node of the tree structure

represents the root problem, which is the original

problem with the complete feasible region. This is

taken as the starting point of the solving process for

the root problem.

The branching procedure where problem is split

into two or more sub-problems is illustrated in Fig 1.

The union of these sub-problems is always the parent

node problem. At different levels of the search tree, a

node represents a partial solution of the node problem

at that level. Recursively, the algorithm is applied to

the sub-problems at different levels. Progress of the

search is determined from an active node, which is

unselected yet. In this way, subsequent set of nodes

are determined. To compute the lower and upper

bounds, bound procedures are used. The quality of the

best schedule found during the search is represented

by the upper bound. On the other hand, best possible

quality at a given node is reflected by the lower bound

at that node. In solving combinatorial optimization

problems, where the search space is exponentially

huge, these bounds play a vital role to limit the search

space and guide the direction of the search in fruitful

area of the search space. Initiating from the root node,

for each of the branched sub-problem, procedures of

lower-bounding and upper-bounding are applied

iteratively. Limiting of the search space is obtained

by discarding a node (and hence all sub-problem

emanating from that node), for which the lower bound

SHAHZAD et al.: A SINGLE MACHINE SCHEDULING PROBLEM WITH INDIVIDUAL JOB TARDINESS

379

exceeds the best-the known value of the best feasible

solution. A local optimal may be found in the sub-

space feasible region of that node but no globally

optimal solution can exist in that subspace. This

iterative solving, bounding and pruning process

continue till all the nodes are exhausted. Finding an

optimal solution for a sub-problem, merely represents

one of the many feasible solutions for the root

problem and not necessarily a globally optimal

solution for the root problem.

The procedure of branch and bound can easily be

applied in the case of a single objective optimization

problem. In this process, bounds can be computed by

applying certain relaxations to the original problem.

For instance, construction of a branch and bound

procedure for 1|rj|Lmax may be as follows. First check

the eligibility of a task for a particular position is

checked in the branching procedure. For this, let task

c is considered as a candidate for position k. This is

possible if and only if rc<min(max(t, rl) + pl)., where

Jl∈J. J represent the set of tasks that are not yet

scheduled while t denotes the completion time of the

previous task on the machine. Pruning of the node

from the tree is applied, if any job task does not

satisfy this inequality.

Applying preemptive EDD (Earliest Due Date) rule

is one of the many possible relaxations that can be

applied to compute the bounds. It is known that the

preemptive EDD rule is able to find an optimal

schedule for 1|rj, prmp|Lmax. This problem represents a

relaxation of 1|rj|Lmax. Lower bound is calculated at

each node and if the lower bound for a node exceeds

the upper bound (found previously), then no further

branching of this node is considered.
11

In contrast to single objective scheduling problems,

where one optimal schedule is to be found, multi-

objective branch-and-bound scheduling procedures

look for the Pareto front of schedules (in fact, for each

Pareto point in the objective space, one schedule is to

be found). Therefore, instead of a single schedule, a

set of non-dominated schedules found are kept at each

step. Furthermore, from a particular node in the

search tree, it is possible that many Pareto optimal

schedules, reachable from that node, are existent

unlike the single-objective case. Hence, a set of lower

bounds is associated with a single node instead of a

single bound. The generalization of the concepts of

bounds is the bound sets, that can be adapted in multi-

objective optimization problems.

For the success of any branch and bound

procedure, quality of bounds is vital. For the case of

multi-objective optimization problems, ideal point

y
I
 and nadir point y

N
, with y

I
<y<y

N
 are well-known.

Ideal point represents a lower bound. Nadir point

y
N
 represents the upper bound on the value of any

efficient point. However, it is unfortunate that these

bounds are not very effective, being quite distant from

the non-dominated schedules. Applying the concept

of bound sets, local ideal points represent a set of

lower bounds while the local nadir points represent

the set of upper bounds. One can derive these local

ideal and local nadir points from supported solutions

adjacent to each other in the objective space. Now the

application of this branch and bound procedure on P

is presented in the next section.

Individual Task Tardiness Enumeration

With the execution of n tasks on a single machine

and having the objective to minimize the tardiness of

each task independently, one comes across an

enumerative n-objective optimization problem.

However, there is a strong coupling among the

individual task tardiness values. Enumerating these

tardiness values Tj for all j tasks as performance

Fig. 1 — Multi-objective branch and bound tree of active schedules

J SCI IND RES VOL 79 MAY 2020

380

measure makes the problem as dynamic n-objective

optimization problem. Note that, by setting ∀j, dj= 0,

1|rj|#{Cj} becomes a special case of individual task-

tardiness-enumeration problem. As a generic notation

for single machine problem, 1||#(f1, ..., fK), any task

related objective is enumerated to find a non-

dominated solution. In order to construct pareto

optima, the algorithm needs to enumerate all the

solutions. It is evident from the notation representing

a posteriori resolution contexts.
16

 As the number of

objectives are dynamic according to the number of

tasks appearing in the system, enumerative notation of

#{Tj} is employed. This notation is representing the

individual task tardiness as part of the objective. This

means that the concept of dominance of the schedules

is to be used here. We find the set of all non-

dominated schedules of this scheduling problem. To

find these non-dominated schedules for P, we used a

branch and bound procedure. For the enumeration and

branching, we have used active schedule generation

procedure with depth first strategy for generation of

the active nodes.

We have employed two bounding schemes. As a

node represents a partial schedule, we solve instances

of the problem 1|rj, prmp|#Tj at each node in the first

bounding scheme. We obtain the set of lower bounds

for the original problem as the tardiness for all n

tasks. If the tardiness value is not dominated the prior

lower bound set, we can prune the node. Here we

intrinsically assume that the corresponding sub-

problem of a node having its dominated schedules are

themselves dominated. Local ideal points are used in

the other bounding scheme. We illustrate the

procedure in Fig.1 for a 1|rj|#{Tj} problem listed in

Table 1. At each stage during the execution of the

procedure, all the partial and complete schedules are

listed in Table 2. Two possible branches (active) can

be seen at the root node (*,*,*,*). At this node, both

the branches are explored because we have a non-

dominated schedule with a bound of (0,5,4,0). Despite

the fact that the nodes 20–23 are not explored by the

procedure (as their root node 19 is dominated), in

Table 2, we have listed these nodes for the sake of

clarity. This is evident from Fig. 1 as well.

Subsequently, for the problem in Table 1, all the non-

delay schedules are given in Fig. 2. All the active, but

not non-delay, schedules are listed in Fig. 3. A total of

12 schedules are identified as active whereas a total of

8 schedules are non-dominated.

Discussion

Though seems surprising, but not unusual that in

practice, the single machine problem arises quite

frequently. For example, an obvious one is a single

processor non-time-sharing computer for processing

of tasks awaiting service. Then, we have other

instances of its application, where we can split large

problems in complex plants to act as single machine

Table 1 — A 1|rj|# {Tj} problem P

j rj pj dj

1 0 4 8

2 1 2 12

3 3 6 11

4 5 5 15

Table 2 — Node listing for branch and bound procedure

Node

number
Node

Number of

branches
Tardiness Dominated?

1 (*,*,*,*) 2 (0,5,4,0) N

2 (1,*,*,*) 3 (0,5,4,0) N

3 (1,2,*,*) 2 (0,0,6,1) N

4 (1,2,3,*) 1 (0,0,1,7) D

5 (1,2,3,4) 0 (0,0,1,7) D

6 (1,2,4,*) 1 (0,0,6,1) N

7 (1,2,4,3) 0 (0,0,6,1) N

8 (1,3,*,*) 2 (0,5,0,5) N

9 (1,3,2,*) 1 (0,0,0,7) N

10 (1,3,2,4) 0 (0,0,0,7) N

11 (1,3,4,*) 1 (0,5,0,5) N

12 (1,3,4,2) 0 (0,5,0,5) N

13 (1,4,*,*) 2 (0,6,5,0) N

14 (1,4,2,*) 1 (0,0,7,0) N

15 (1,4,2,3) 0 (0,0,7,0) N

16 (1,4,3,*) 1 (0,6,5,0) N

17 (1,4,3,2) 0 (0,6,5,0) N

18 (2,*,*,*) 3 (0,0,7,2) N

19 (2,1,*,*) 2 (0,0,7,2) D

20 (2,1,3,*) 1 (0,0,2,8) D

21 (2,1,3,4) 0 (0,0,2,8) D

22 (2,1,4,*) 1 (0,0,7,2) D

23 (2,1,4,3) 0 (0,0,7,2) D

24 (2,3,*,*) 2 (5,0,0,8) N

25 (2,3,1,*) 1 (5,0,0,8) N

26 (2,3,1,4) 0 (5,0,0,8) N

27 (2,3,4,*) 1 (10,0,0,4) N

28 (2,3,4,1) 0 (10,0,0,4) N

29 (2,4,*,*) 2 (6,0,9,0) N

30 (2,4,1,*) 1 (6,0,9,0 D

31 (2,4,1,3) 0 (6,0,9,0) D

32 (2,4,3,*) 1 (12,0,5,0) N

33 (2,4,3,1) 0 (12,0,5,0) N

SHAHZAD et al.: A SINGLE MACHINE SCHEDULING PROBLEM WITH INDIVIDUAL JOB TARDINESS

381

problem. For instance, to make a single colour in

paint manufacture, the entire plant may be employed

at a time. Finally, we have a bottleneck machine in a

multi-machine complex, where the concept of single

machine is used to decompose a large problem.

Resolution of relatively complex scheduling problems

is often achieved by the study of such a kind of

single machine problems. Hence this can be treated

as a relaxed version of a complex problem,

where relaxation is a method in which a strict

requirement imposed on the problem is temporarily

removed, by either substituting for it another

more easily handled requirement or else dropping it

completely.

Conclusions

In this work, we present an n-objective enumerative

scheduling problem represented as 1|rj|#{Tj}.

Individual task tardiness makes part of the objective

value. We have proposed a branch and bound

procedure where active schedule generation is used for

the enumeration during branching. We used depth first

strategy for the tree exploration and two distinct

bounding schemes to find lower bound set. This study

has the main perspective to reduce the search space by

finding a set of dominance rules in the case of a single

machine problem. However, in order to enhance the

performance of the procedure even for the case of a

single machine with n-objectives.

References
1 Emmons H, One-Machine Sequencing to Minimize Certain

Functions of Job Tardiness, Oper Res, 17(4) (1969) 701–715.

2 Chu C & Portmann M C, Some new efficient methods to

solve the n/1/ri/[epsilon]Ti scheduling problem, Eur J Oper

Res, 58(3) (1992) 404–413.

3 Szwarc W & Mukhopadhyay S K, Decomposition of the

single machine total tardiness problem, Oper Res Lett, 19(5)

(1996) 243–250.

4 Szwarc W, Della Croce F & Grosso A, Solution of the single

machine total tardiness problem, J Sched, 2(2) (1999) 55–71.

5 Szwarc W, Grosso A & Della Croce F, Algorithmic

paradoxes of the single-machine total tardiness problem,

J Sched, 4(2) (2001) 93–104.

Fig. 2 — Non Delay Schedules for Problem P

Fig. 3 — Active Schedules for Problem P

J SCI IND RES VOL 79 MAY 2020

382

6 Gahm C, Kanet J J & Tuma A, On the flexibility of a

decision theory-based heuristic for single machine

scheduling, Comput Oper Res, 101(1) (2019) 103–115.

7 Baptiste P, Carlier J & Jouglet A, A Branch-and-Bound

procedure to minimize total tardiness on one machine with

arbitrary release dates, Eur J Oper Res, 158(3) (2004)

595–608.

8 Loukil T, Teghem J & Tuyttens D, Solving multi-objective

production scheduling problems using metaheuristics,

Eur J Oper Res, 161(1) (2005) 42–61.

9 Kolahan F & Sharifinya A, Simultaneous job scheduling and

tool replacement based on tool reliability by proposed

Tabu-SA algorithm, J Sci Ind Res, 68(6) (2009) 496–504.

10 Parthiban P & Abdul Zubar H, An integrated multi-objective

decision making process for the performance evaluation of

the vendors, Int J Prod Res, 51(13) (2013) 3836–3848.

11 Nelson R T, Sarin R K & Daniels R L, Scheduling with

multiple performance measures: the one-machine case,

Manage Sci, 32(4) (1986) 464–479.

12 Pinedo M & Chao X, Operations Scheduling with

Applications in Manufacturing and Services. Irwin/McGraw-

Hill; 1999.

13 Kiran A S & Unal A T, A single-machine problem with

multiple criteria, Nav Res Logist, 38(5) (2006) 721–727.

14 Lin K S, Hybrid algorithm for sequencing with bicriteria,

J Optim Theory Appl, 39(1) (1983) 105–124.

15 Xu J, Lin W-C, Yin Y, Cheng Y & Wu C-C,

A Two-Machine Flowshop Scheduling Problem with a

Job Precedence Constraint to Minimize the Total Completion

Time, J Sci Ind Res, 76(12) (2017) 761–766.

16 T’kindt V & Billaut J C, Multicriteria Scheduling: Theory,

Models and Algorithms. Springer Verlag; 2006.

