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The growing usage of Semantic Web has resulted in an increasing number, size and heterogeneity of ontologies on the 
web. Therefore, the necessity of ontology matching techniques, which could solve these issues, is highly required. Due to high 
computational requirements, scalability is always a major concern in ontology matching system. In this work, a partition-based 
ontology matching system is proposed, which deals with parallel partitioning of the ontologies at multilevel. At first level, the 
root based ontology partitioning is proposed. Match able sub-ontology pair is generated using an efficient linguistic matcher 
(IEI-Sub) to uncover anchors and then based on maximum similarity values, pairs are generated. However, a distributed and 
parallel approach of Map Reduce-based IEI-sub process has been proposed to efficiently handle the anchor discovery process 
which is highly time-consuming. In second level partitioning, an efficient approach is proposed to form non-overlapping 
clusters. Extensive experimental evaluation is done by comparing existing approaches with the proposed approach, and the 
results shows that MPP-MLO turns out to be an efficient and scalable ontology matching system with 58.7% reduction in 
overall execution time. 
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Introduction 
In this data age, ontologies are gaining lot of 

consideration in Computer Science, especially in the 
field of Semantic Web technologies. Sharing of 
information and integration among various applications 
through ontologies has contributed tremendously in 
developing and deploying semantic web. The amount 
of ontologies is increasing day by day and gaining lot 
of popularity in Semantic query search1, intelligent 
advisory systems, Semantic information integration etc. 
Handling semantic heterogeneity problem is very 
challenging and ontology matching system has been 
proposed to overcome this challenge by establishing 
interoperability between various applications that uses 
different yet related ontologies. One of the most 
challenging issues outlined in researches related to 
ontology matching systems is matching large scale 
ontologies. Terminological and conceptual level of 
large scale ontologies is very heterogeneous in nature 
and considered as the main reason for such issues. 
Furthermore, the resource requirement is another major 
challenge, exploring large scale ontologies requires 
large search space to uncover correspondences. Also, at 

each computational stage, there is a high requirement 
for main memory to store and process temporary 
results. Therefore, effectiveness and efficiency of any 
large scale ontology matching system will strongly get 
impacted from the mentioned factors. Researchers2 
proposed various data mining approaches to identify 
the appropriate features to match ontologies. The 
sensor3 ontology matching system address the 
limitation of local optimal solution and Evolutionary 
Algorithm for matching large number of concepts. 
Facilitating the semantic interoperability in any domain 
requires integration of entities in upper ontology. 
Integration is very tedious task and requires human 
interventions despite many automated methods4,5 are 
emerging. Machine learning models6 are also trained 
using the knowledge base and external sources to 
match input ontologies. Aspect based semi automated 
ontology builder, (SOBA)7 is implemented for 
semantic analysis. The limitation of existing 
approaches8 in dealing large scale ontology are low 
accuracy, performance inefficiency and high 
computational complexity. The motivation behind the 
proposed work is the widely adoption of ontologies as 
a means for knowledge sharing and reuse. In large 
scale ontology matching system, each entity of input 
ontology should be matched with each of the entities 
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from the second input ontologies, resulting in high 
computational complexity. Also, various matching 
algorithms are needed to determine structural, 
linguistic and other similarity, which further increases 
the space and time complexity. Ontology partitioning 
requires only the comparison between the entities of 
match able cluster pair instead of the entire entities in 
input ontologies, which leads to reduction in space and 
computational complexity. The anchor identification 
process consumes high computation which requires 
efficient solution to process large data in distributed 
and parallel manner. Map Reduce framework could 
easily store and process large data sets. The key 
contribution of this work is mentioned below: 
 

i) Multilevel Partitioning: Ontology partitioning at 
multilevel. The first level partition the ontology 
from root and second level partitioning generated 
the non-overlapping clusters. 

ii) Parallelism: The input ontologies partition process 
is computed in parallel, which leads to reduction in 
computational complexity. 

iii)  IEI-Sub Matcher: An efficient linguistic matcher is 
proposed for finding the anchors between the all 
the entities of the both the input ontologies. This 
process requires high computation. 

iv) Map Reduce Based IEI-Sub Matcher: To overcome 
the computational bottleneck of anchor discovery 
phase, Mapper and Reducer based algorithm is 
proposed to implement IEI-Sub Matcher to find the 
anchors efficiently. 

 

Methodology 
The proposed framework MPP-MLO is described 

in Fig. 1, which composed of four components 
namely First Level Partitioning, Partitioned Ontology 
Candidate Mapping, Second Level Partitioning, and 
Final Alignments.  
 
First Level Partitioning 

In this module, pre-processing and entity document 
creation is performed after which root level 
partitioning is done as described in detail below. 
 
Preprocessing 

In this step, tokenization, Stop Word removal and 
stemming are done on label, comments and name of 
an entity. After this, the document for each entity of 
the ontology is formed based on following: 
 

(1) Structural connection SC(e,d) of an entity e ϵ E, 
(E denotes entity set) is defined as in Eq.1 

ሺ݁,݀ሻܥܵ =   {ሺ݁,݀ሻݏݏ݈ܽܥ	ݎ݁݌ݑݏ	ᴜ	ሺ݁,݀ሻݏݏ݈ܽܥ	ܾݑݏ}
… (1) 

 

where sub Class(ei,d) denotes the subclass or 
children of e within d levels. The super Class(e,d) 
denotes the super Class or the parents of e within d 
hierarchical level in the ontology.  
 

(2) Linguistic description contains all the human 
readable information such as comments or labels 
provided to that entity.  

(3) Closeness centrality is the measure which reflects 
the significance of nodes that are near to all other 
ones present in the graph. In Eq. 2 the cost of 
reaching all the nodes from one node is 
calculated. The distance (i,j) denotes the function 
to calculate the shortest path between the node i 
and j in the graph, where jϵV, V is set of vertices 
in graph. 

 ܿܿሺ݅ሻ = 	1 ∑ ,݅)݁ܿ݊ܽݐݏ݅݀ ݆)௝⁄   … (2) 
 

Root Level Partitioning 
In this level of partitioning, it has been proposed 

that the input ontologies should be partitioned from 
root level. In all the previous work done9,10 for 

 
Fig. 1—Framework for Multilevel Parallel Partitioning for
Efficiently Matching Large Ontologies 
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ontology matching using partitioning technique, main 
concern is the memory and the computation time 
consumed. Every entity is compared to all other 
entities in the same ontology either to calculate their 
intra similarity measures or for partitioning process. 
In intra similarity measures, similarity between 
entities present in input ontologies are calculated, 
each entity present in ontology is assumed to be a 
cluster and then merged. Suppose ontology contains 
1500 entities, it means each entity will be compared 
to other 1499 entities for intra-similarity measure. 
Also, for partitioning process, each 1500 entities 
assumed to be individual cluster and finally merged to 
form final partitions. After following the same 
procedure, both the input ontologies are divided into 
partitioned ontologies known as clusters, and then 
mapping between the partitioned ontologies from both 
the input ontologies is done to find the candidate 
mapping, which means the two most similar cluster 
pair from both the input ontologies should be matched 
further to get alignments. It requires lots of 
computation time and space. Now suppose, in the 
same ontology containing 1500 entities, there are only 
30 entities which are directly connected with root 
concept. So, without using much computation for 
finding intra similarity and further applying complex 
partitioning technique, the input ontologies can be 
easily partitioned at first level. So, instead of 
computing large n×m where n and m entities of input 
ontology 1 and input ontology 2 respectively, the next 
level of partitioning would be on k×l, where k,l are the 
entities of sub-ontolgies generated after first level 
partition and k<n, l<m. 
 

Partitioned Ontology Candidate Mapping 
This module is divided into two parts, one is to 

uncover anchor using Map Reduce based IEI-Sub 
(Improved EI-Sub9) matcher and other is to find 
matchable sub-ontology pair. 
 

Uncovering Anchor using IEI-Sub 
Entity pairs showing high linguistic similarity are 

known as anchors. Each sub-ontologies of input 
ontology O is matched with each sub-ontology of 
other input ontology O’ for uncovering anchors. 
Entities in the sub-ontologies showing maximum 
anchor similarity becomes matchable sub-ontology 
pair for further alignment discovery. Without 
partitioning, cartesian product of all entities of the two 
large input ontologies needs to be processed for 
finding alignment, but using partitioning only a 
section of sub-ontology pair needs to be processed for 

the same, this helps in saving major computational 
time and space. Although, in this module of anchor 
uncovering, the computation time for n and m entities 
of input ontologies O & O’ would be high, as it will 
require n×m comparisons.  

In this system, efficient linguistic matcher IEI-Sub 
derived from EI-Sub and using wrinkle11 is presented. 
The proposed function in Eqs 3 & 4, finds the 
commonality between string and used correction 
coefficient p for the improvement of results. It 
recursively finds the common substring and then 
removes the common part and again starts with the 
leftover part.  
 ܵ݅݉௖௢௠௠ = 

ଶ×∑ ௟௘௡(௖௢௠௠௢௡௦௧௥௜௡௚)೔௟௘௡(௘భ)ା௟௘௡(௘మ)  … (3) 
 

IEI-Sub(e1,e2) = ܵ݅݉௖௢௠௠ + (݉ + ݊) × ݌ × (1−ܵ݅݉௖௢௠௠) … (4) 
 

where e1 and e2 are the entities in the sub-ontology 
SO and SO’ respectively and m and n are the length of 
common prefix (start of the string) and the length of 
common suffix (end of the string) up to a maximum 
of four characters respectively and p is constant 
scaling factor to improve results, whose value is 0.1. 
Similarity value is compared with threshold value, if 
similarity value is greater than threshold value, two 
entities will be called as anchor. It has been reported 
by OAEI 2007 that 50% of the total alignment can be 
generated using efficient linguistic matcher. 
 
Map Reduce based IEI-sub 

The proposed first level partitioning has decreased 
the computational time required for anchor discovery 
significantly, as the anchor discovery is only required 
within the sub-ontologies generated after first level 
partitioning. So, instead of comparing complete n×m 
entities present in two input ontologies, system needs 
to compare only a×b entities of sub-ontologies 
candidate pair, where N,M are the entities in sub-
ontology 1 and sub-ontology 2 and N×M<n×m. Even 
though the IEI-Sub matcher is computationally 
efficient, the anchor identification process still 
requires high computation time. With the 
advancement of Big Data technology which provides 
efficient solution to deal with high computation time 
and storage problems, it can prove to be very 
beneficial for finding anchor at this stage. So, in this 
module hadoop 2.7.3 platform is used which works 
on MapReduce framework. IEI-Sub matcher is 
modulated as per the mapper and reducer function for 
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computation in distributed and parallel environment 
for finding anchors. The proposed method based on 
Map Reduce is described in algorithm(1–3) for the 
Key Generation, Mapper and Reducer.  
 

Algorithm 1:GenerateKey(Sub-Ontology1 as A, 
Sub-Ontology 2 as B) 
1. declare empty datafile C 
2. for each row in datafile A 
2.1 assign incremental numeric key as Id 
2.2 append ID to data row 
2.3 append field datasource with value “A” to each 

row 
3. for I in {1,N}, where N = number of rows in 

datafile A: 
3.1 assign ID column with value i 
3.2 for each row in datafile B 
3.2.1 append Id to data row 
3.2.2 append field datasource with value “B” to each 

row 
3.2.3 append generated row to datafile C 
 
Algorithm 2: Mapper(Id, Value): 
1. for each Id: 
1.1 get columns from datafile A 
1.2 get colums from datafile B 
1.3 create a commom structure to include values 

from both A and B 
1.4 Emit (Id, [name, label, comments, datasource}) 
 
Algorithm 3: Reducer(Id,Values): 
 

1. Initiate variable PREV_ID to null 
2. Declare array ARR 
3. Def calculate(ARR): 
3.1 split ARR to variables, NAME, LABEL, 

COMMENTS, DATASOURCE 
3.2 separate rows from datasource A and B 
3.3 filter B for all relevant sub classes for A 
3.4 for each item in B: 
3.4.1 calculate similarity with A and assign to variable 

RESULT 
3.4.2 Emit (Id, RESULT) 
4. For each row in streaming input: 
4.1 get ID from row 
4.2 if PREV_ID is null or PREV_ID=ID: 
4.2.1.1 append Values to ARR 
 

else: 
 
4.2.1.2 call function calculate(ARR) 
4.2.1.3 empty ARR 

4.2.1.4 set PREV_ID = ID 
 

The linguistic similarity of label, comment and 
name between the entity pairs are calculated at the 
reducer level. The similarity value assigned to the 
entity pair is the highest linguistic similarity value 
calculated between the entity pair using their label, 
comment and local name. Only the entity pair having 
similarity value higher than the given threshold value 
qualifies as the anchor, whereas the remaining entities 
are simply ignored. Therefore, the output generated 
from the framework is fewer than n×m records. The set 
of anchors are the output produced from this 
framework, where it corresponds to <Key-Value> Pair. 
The key represents the distinctive entity pair identity 
and the value represents the similarity among them. 
 

Partitioned Ontology Candidate Mapping 
The anchor discovered in previous section was 

used to find the matchable sub-ontology pairs. If the 
two sub-ontologies share maximum number of 
anchors, then these two sub-ontologies are identified 
as matchable sub-ontology pair. Linguistic similarity 
implies the possibility of discovering more number of 
alignments. Therefore, if two sub-ontologies share 
high linguistic similarity, it means there is high 
probability of finding more alignments between them 
and presented in algorithm 4. Let O1 and O2 represent 
two input ontologies, SO1 represents the set of  
sub-ontologies generated after first level partitioning 
of input ontology O1, ns1 is the number of sub-
ontologies in SO1. Similarly, SO2 represents the set of  
sub-ontologies generated after first level partitioning 
of input ontology O2 and ns2 is the number of  
sub-ontologies in SO2. The calculation based on 
which matchable sub-ontology pair is identified is 
shown in Eq. 5. It is the ratio between the anchors 
shared between two sub-ontologies to the total 
number of anchors present in them. 
 

So_sim(sc1i,sc2j)= ∑ ∑ ଶ௔௡௖௢௥(ୱୡଵ୧,ୱୡଶ୨)౤౩మೕసభ౤౩భ೔సభ∑ ௔௡௖௢௥൫௦௖ଵೖ,௦௖ଶೕ൯ೞ೎భೖചೄೀభ ା∑ ௔௡௖௢௥(௦௖ଵ೔,௦௖ଶೖ)ೞ೎మೖചೄೀమ   

… (5) 
 

Algorithm 4: Matchable SubOntology Pair 
 

Input: Set of two SubOntologiesSO1 and SO1, ns1 is 
the number of sub-ontologies in SO1, ns2 is the 
number of sub-ontologies in SO2 
 

Output: Set of Matchable subontology pair, MS 
 

γ=0.75, i=1, j=1 
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//calculating the share anchor between two sub-
ontology pair (sc1i, sc2j) 
 

for each i in range(0, ns1) 
for each j in range(0, ns2) 
shared_anchor+=ܽ݊ܿℎݎ݋(sc1i, sc2j) 
end 
end 
 

//total number of anchor between two sub-ontology 
pair 
 

for each 1ܿݏ௞߳ܵ ଵܱ 
tot1+=ܽ݊ܿℎ1ܿݏ)ݎ݋௞ ,  (2௝ܿݏ	
end 
for each ܽ݊ܿℎ1ܿݏ)ݎ݋௞ ,  (2௝ܿݏ
tot2+=ܽ݊ܿℎ1ܿݏ)ݎ݋௜ ,  (2௞ܿݏ
end 
 
//Calculating similarity between two sub ontology 
pair 
 
For each subontology in SO1 

For each sub-ontology in SO2 

So_sim(sc1i, sc2j) = 
௦௛௔௥௘ௗ_௔௡௖௛௢௥௧௢௧ଵା௧௢௧ଶ  

If((So_sim(sc1i, sc2j)>γ) 
MS= MS U (sc1i, sc2j) 
end 
end 

The function anchor (sc1i, sc2j) computes the total 
number of anchors between the sub-ontology sc1i and 
sc2j where sc1iϵ SO1 and sc2jϵ SO2. Threshold value, 
α[0,1] is also set to describe the criteria for minimum 
similarity. If the sub-ontology pair value is greater 
than the threshold value, they are identified as 
matchable sub-ontology pair. Due to the discovery of 
matchable sub-ontology pair, further alignment 
computation would decrease greatly. 
 
Second Level Ontology Partitioning 

Once the matchable sub-ontology pair is formed 
after candidate mapping process, these pairs are 
provided as an input for second level ontology 
partitioning to generate non-overlapping clusters. In 
this module, the second level partitioning of each sub-
ontology of matchable sub-ontology pairs is done in 
parallel, thus reducing the computation time of cluster 
formation. Also, all the further computation is applied 
only on each pair of matchable sub-ontology rather 
than comparing each sub-ontology pair to other (n-1) 
sub-ontology pair, where n is the sub-ontology pairs 
generated after mapping process. So, to further 

partition the matchable sub-ontology pair sc1i and sc2j 
where sc1iϵ SO1 and sc2i ϵ SO2 respectively in parallel 
to generate groups of disjoint clusters x1,x2,x3…….xk, for 
each sub-ontology such that the cohesion among the 
entities in the clusters should be high and the coupling 
between the entities of clusters should be low. Based 
on this goal, second level partitioning is shown in 
algorithm 5 and its process is described in detail in the 
following sections. 
 
Finding Number of Partition 

Typically, if the objective criterion is not defined 
then determining the number of partition of a given 
ontology is done using trial and error technique to 
find out the optimal number of partitions. 
 
Entity Score Function 

All the entities in the ontology are ranked based on 
the entity itself and its neighbors. More is the score of 
the entity, significant is the entity and hence is chosen 
as cluster head. Score function should be 
computationally efficient and also effective. So, the 
entity score function to calculate the score of each 
entity is based on two parameters namely structural 
connection and closeness centrality. Each entity’s 
document contains information about these 
parameters as described previously. If the entity has 
more surrounding nodes, it means it has more 
structural connection, thus having more score. 
Similarly, high is the closeness centrality, high is the 
score of the entity. Entity score function then 
calculates the score of each entity based on the given 
two parameters as shown in Eq. 6. 
 Entityୖୟ୬୩ୗୡ୭୰ୣ = 	SC(e, d) + 	CC	(e)  … (6) 
 

where SC(e,d) is the structural connection as in 
Eq.(1) and CC(e) is the closeness centrality as in Eq. 2. 
 
Determining Cluster Head (CH) 

Once the score of each entity is computed by entity 
score functions, next task is to select the cluster head. 
If node with the highest score is chosen randomly as 
cluster head, there would be problem of distribution 
of the cluster head in the given graph. So to overcome 
this problem, a minimum of d distance is kept 
between two chosen entities as cluster head.  
 
Non-overlapping Cluster Creation 

In this module, each cluster is assigned under one 
cluster head, and all its direct sub classes or child 
nodes are placed in the cluster. The leftover entities 
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are placed using a membership function, which 
computes the leftover entity’s membership to each 
cluster head and thereby assign those entities to the 
right cluster. Due to directly placing the child nodes 
into the cluster in this module is computationally 
efficient, as it saves lot of time in comparison and 
computing membership. 
 
Algorithm 5: Second Level Partitioning 
 

Input: Set of entities E in sub-ontology after first 
level partitioning, n number of optimal partitions 
 

Output: Set of Cluster X 
 

STEP 1: Calculating each entity score using ranking 
function 
 Entityୖୟ୬୩ୗୡ୭୰ୣ = 	SC(e, d) + 	CC	(e) 
 

STEP 2: Determining ‘n’ cluster head:Entities having 
highest RankScore is determined as Cluster head 
with‘d’ distance apart. 
 

STEP 3: All each cluster is assigned under one 
cluster head, and all its direct sub classes or children 
are placed in the cluster. 
 

STEP 4: Each leftover entity is compared with 
Cluster head based on membership function and entity 
sharing maximum similarity value with the cluster 
head, is assigned to that particular cluster. 
௜݁)	݊݋݅ݐܿ݊ݑܨ	݌ℎ݅ݏ	ݎܾ݁݉݁ܯ  =(௜ܪܥ, ߙ	 × ௜݁)	ܥܵ (௜ܪܥ, + ௜݁)	ܵܰ	ߚ +(௜ܪܥ, ߛ × ܵܵ	(݁௜  (௜ܪܥ,
 

STEP 5: Set of cluster generated is given as output. 
 

Membership Function 
At this stage, the direct child nodes of the cluster 

heads have already been placed in clusters. Next task is 
to build some membership function which can 
correctly categorize entity ei ϵ E to the cluster Xi, i<= k. 
First of all, the remaining entities are assigned a 
variable assign whose default value is false, once the 
membership function is applied to the entity and it is be 
placed in some cluster, the value of assign variable is 
changed to true. Each entity is placed only in one of the 
cluster which results in non-overlapping clusters. 
Instead of comparing the leftover entities to all the 
other entities in the cluster, it is only compared with 
cluster heads. The similarity value between entities and 
each cluster heads is calculated using membership 
function, and entity sharing maximum similarity value 

with the cluster head, is assigned to that particular 
cluster. The membership function in Eq. 7 considers 
combination of three parameters to calculate overall 
similarity, such as structural connection, naming 
similarity and semantic similarity between the entity ei 

and CHi as follows: 
௜݁)݊݋݅ݐܿ݊ݑܨ݌ℎ݅ݏݎܾ݁݉݁ܯ  (௜ܪܥ, = ߙ	 ௜݁)ܥܵ× (௜ܪܥ, + ߚ × ܰܵ(݁௜ (௜ܪܥ, + ߛ × ܵܵ(݁௜   (௜ܪܥ,

… (7) 
 

where α,β,γ are constants and denote the importance 
given to each parameter and α+β+γ=1, SC(ei,CHi), 
NS(ei,CHi), SS(ei,CHi) are the structural connection, 
naming similarity and semantic similarity between 
entity and cluster head respectively. The structural 
connection measures the neighborhood similarity 
between entity and cluster head. More the number 
common neighbors both will share, more is the 
similarity value between entity and cluster head. The 
naming similarity measures the label or name of entity 
and corresponding cluster head. Researchers12 showed 
that the name of nodes is the most dominant feature. 
For this purpose, the Levenshtein distance is used, also 
called string edit distance. The semantic similarity 
measures the semantic relation shared between entity 
and the cluster head such as hypernym, hyponym etc. 
 
Matchable Cluster Pair and Alignment Discovery 

Once the clusters are generated after applying 
second level partitioning on sub-ontology pairs, next 
step is to find anchors among them and then at last 
discovering matchable cluster pair for finding 
alignment using the same process as proposed in 
partitioned ontology candidate mapping. However, 
the anchor discovery is already done using IEI-sub 
method and the MapReduce framework. Therefore, 
only matchable cluster pairs are discovered in this 
section. All the matchable cluster pair generated as 
output will pass on to the powerful linguistic matcher 
VDoc13 and then to GMO matcher14 for final 
alignment discovery as done in other researches.9,10 
 

Experimental Results 
To prove the efficiency and the scalability of the 

proposed multilevel ontology matching system, 
different sizes of ontologies datasets are taken into 
account. The small ontology pair such as Toursim AB 
and Russia 12, used for partitioning, can be retrieved 
from http://ws.nju.edu.cn/falcon-ao/. Other large scale 
ontology taken into account such as FMA–NCI, NCI–
SNOMED (40%), FMA–SNOMED (40%) can be 
downloaded from OAEI (Ontology Alignment 
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Evaluation Initiative). The enormous computation is 
required to match these three large pair of ontologies 
depending upon the number of matching used, more 
the number of matcher required in matching the 
ontologies pair, more would be the computation 
required. The experimental results are divided into 
number of phases such as F-measure and execution 
time using partitioning and without partitioning, 
anchor identification, IEI-Sub matcher and the 
experiment on precision, recall and F-measure. 
 

Experiment on Partitioning and without Partitioning 
This experiment demonstrated the requirement for 

partitioning of large ontology in ontology matching 
systems. The proposed system is transformed to find 
the alignment between the input ontology without 
partitioning. As shown in Fig. 2, MPP-MLO proved to 
be more efficient with partitioning as compared to 
without partitioning, although the accuracy of the 
system is slightly compromised due to the fact that the 
cartesian product of all the entities are not computed in 
case of MPP-MLO with partitioning. The computation 
required in MPP-MLO without partitioning is very 
high as compared to MPP-MLO with partitioning.  
 

Experiment on Anchor Identification 
The execution time required for discovering the 

anchors among the entities pair based on IEI-Sub, EI-
Sub, I-Sub and SI-Sub are shown in Table 1. Although 
the execution time taken by IEI-Sub is almost same as of 
EI-Sub, and on an average, it is reduced by 13.4% as 
compared to the execution time taken by I-Sub. It can be 
clearly inferred that the SI-Sub execution time is less 
than ISI-Sub as the latter used very naïve similarity but 
in the following experiment, it is observed that this 
method is less effective as compared to others. The 
matchable cluster pair and the matchable sub-ontology 
pair are identified only on the basis of anchors 
discovered which further helps in finding final 
alignment set. Therefore, choosing the right matchable 

cluster pair is the crucial task for the overall ontology 
matching system. 
 

Experiment on IEI-sub Matcher using MapReduce 
In this experiment, anchor discovery using IEI-Sub 

over different number of nodes in Hadoop 
environment and using three large ontologies pair are 
compared and shown in Fig. 3. It can be observed that 

 
 

Fig. 2—Execution & F-measure of MPP-MLO and MPP-MLO 
without partitioning 
 

 
 

Fig. 3— Execution time by MapReduce based IEI-Sub for anchor 
identification 

Table 1— Execution time comparison for anchor identification of 
Falcon, LOMPT, PSOM2 and MPP-MLO 

 FMA–NCI FMA–SNOMED 
(40%) 

NCI–SNOMED 
(40%) 

Falcon  
(I-Sub) 

44, 214 148, 392 106, 448 

LOMPT 
(SI-Sub) 

35, 623 117, 267 84, 413 

PSOM2  
(EI-Sub) 

39, 919 125, 192 90, 118 

MPP-MLO  
(IEI-Sub) 

39, 515 124, 784 89, 798 
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there is almost 51.5% reduction in execution time for 
FMA–NCI and in case of NCI– SNOMED (40%) and 
FMA– SNOMED (40%) there is a reduction of 57.5% 
and 54.8% in execution time respectively. This proves 
that MPP-MLO achieves reduction in execution time 
and hence more scalable as compared to other 
existing ontology matching systems. 
 

Experiments on Performance Measure 
The main motive of proposing this ontology 

matching system, MPP-MLO is to achieve high 
accuracy, better efficiency and the scalability.  
FMA–SNOMED (40%), FMA–NCI and NCI–
SNOMED (40%) are the pair of ontologies used for 
the evaluation. In this experiment, precision, recall 
and F-measure are evaluated as shown in Fig. 4. 
Based on the experiment and the results shown, it can 
be infer that the MPP-MLO achieve better accuracy 
as compared to PSOM and the LOMPT, due to 
multilevel partitioning and the IEI-Sub. Although, 
MPP-MLO precision is less than Falcon with a small 
margin, this is due to the fact that Falcon uses robust 
and high computational linguistic matcher to indentify 
anchor which in turn contributes in overall findings of 

alignments. The F-measure also shows that the MPP-
MLO is effective than the other ontology matching 
systems.  
 

Experiments on Total Execution Time 
Finally, the total execution times used by all the 

ontology matching system for finding out the final 
alignments are compared in Table 2. It is observed that 
almost 58.9% reduction in the execution time when 
compared with Falcon and specifically for NCI–
SNOMED (40%), the reduction in execution time is 
around 61.7%. In case of LOMPT, the reduction in 
execution time is almost 50.3% and specifically for 
NCI–SNOMED, the reduction in execution time is 
55.5%. In case of PSOM, the execution time is almost 
same, but the accuracy of the proposed system is more. 
As is can be proved seeing the results that MPP-MLO 
has better efficiency as compared to others. 
 

Conclusions 
In this work, a novel multilevel parallel partitioning 

based ontology matching technique is proposed, which 
targets efficiency and effectiveness over the state of the 
art ontology matching technique. There is 58.7% 
reduction in execution time of the proposed system as 
compared to other existing approaches. In large scale 
ontology, as the size of cluster should be less for better 
computation time and space, so this is well achieved 
using partitioning at two levels without incurring extra 
overheads. The efficiency and the computational time 
are increased by 78.9% using concept of partitioning. 
The proposed system used MapReduce framework to 
handle the most time consuming process of finding 
anchor in order to achieve better scalability in parallel 
and distributed manner. On an average, 54.6% 
reduction in execution time using MapReduce 
framework. To discover the anchors set, a light weight 
and efficient linguistic matcher called IEI-Sub is 
proposed. The execution time of IEI-Sub is reduced by 
13.5% as compared to I-Sub. Also for second level 
partitioning, non overlapping clusters are formed using 
score, ranking function and membership function, 
which increases the quality of the clusters formed.  

 

Fig. 4— Precision, Recall and F-Measure of Falcon, LOMPT,
PSOM and MPP-MLO 
 

Table 2—Comparison of execution time of Falcon, LOMPT, 
PSOM and MPP-MLO 

 FMA–NCI FMA–SNOMED 
(40%) 

NCI–SNOMED 
(40%) 

Falcon  47,745 165,480 135,694 
LOMPT  38,896 133,376 116,701 
PSOM2 24,200 67,400 52,000 
MPP-MLO 23,987 67,174 51,875 
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