
Journal of Scientific & Industrial Research
Vol. 80, March 2021, pp. 221-229

MPP-MLO: Multilevel Parallel Partitioning for Efficiently Matching Large
Ontologies

Usha Yadav1,2* and Neelam Duhan2

1National Institute of Fashion Technology, Jodhpur 342 037, India
2J C Bose University of Science & Technology, YMCA, Faridabad 121 006, India

Received 01 August 2020; revised 30 December 2020; accepted 12 February 2021

The growing usage of Semantic Web has resulted in an increasing number, size and heterogeneity of ontologies on the
web. Therefore, the necessity of ontology matching techniques, which could solve these issues, is highly required. Due to high
computational requirements, scalability is always a major concern in ontology matching system. In this work, a partition-based
ontology matching system is proposed, which deals with parallel partitioning of the ontologies at multilevel. At first level, the
root based ontology partitioning is proposed. Match able sub-ontology pair is generated using an efficient linguistic matcher
(IEI-Sub) to uncover anchors and then based on maximum similarity values, pairs are generated. However, a distributed and
parallel approach of Map Reduce-based IEI-sub process has been proposed to efficiently handle the anchor discovery process
which is highly time-consuming. In second level partitioning, an efficient approach is proposed to form non-overlapping
clusters. Extensive experimental evaluation is done by comparing existing approaches with the proposed approach, and the
results shows that MPP-MLO turns out to be an efficient and scalable ontology matching system with 58.7% reduction in
overall execution time.

Keywords: Big Data, Large scale Ontology, MapReduce, Ontology Matching

Introduction
In this data age, ontologies are gaining lot of

consideration in Computer Science, especially in the
field of Semantic Web technologies. Sharing of
information and integration among various applications
through ontologies has contributed tremendously in
developing and deploying semantic web. The amount
of ontologies is increasing day by day and gaining lot
of popularity in Semantic query search1, intelligent
advisory systems, Semantic information integration etc.
Handling semantic heterogeneity problem is very
challenging and ontology matching system has been
proposed to overcome this challenge by establishing
interoperability between various applications that uses
different yet related ontologies. One of the most
challenging issues outlined in researches related to
ontology matching systems is matching large scale
ontologies. Terminological and conceptual level of
large scale ontologies is very heterogeneous in nature
and considered as the main reason for such issues.
Furthermore, the resource requirement is another major
challenge, exploring large scale ontologies requires
large search space to uncover correspondences. Also, at

each computational stage, there is a high requirement
for main memory to store and process temporary
results. Therefore, effectiveness and efficiency of any
large scale ontology matching system will strongly get
impacted from the mentioned factors. Researchers2
proposed various data mining approaches to identify
the appropriate features to match ontologies. The
sensor3 ontology matching system address the
limitation of local optimal solution and Evolutionary
Algorithm for matching large number of concepts.
Facilitating the semantic interoperability in any domain
requires integration of entities in upper ontology.
Integration is very tedious task and requires human
interventions despite many automated methods4,5 are
emerging. Machine learning models6 are also trained
using the knowledge base and external sources to
match input ontologies. Aspect based semi automated
ontology builder, (SOBA)7 is implemented for
semantic analysis. The limitation of existing
approaches8 in dealing large scale ontology are low
accuracy, performance inefficiency and high
computational complexity. The motivation behind the
proposed work is the widely adoption of ontologies as
a means for knowledge sharing and reuse. In large
scale ontology matching system, each entity of input
ontology should be matched with each of the entities

——————
*Author for Correspondence
E-mail: usha.yadav.912@gmail.com

J SCI IND RES VOL 80 MARCH 2021

222

from the second input ontologies, resulting in high
computational complexity. Also, various matching
algorithms are needed to determine structural,
linguistic and other similarity, which further increases
the space and time complexity. Ontology partitioning
requires only the comparison between the entities of
match able cluster pair instead of the entire entities in
input ontologies, which leads to reduction in space and
computational complexity. The anchor identification
process consumes high computation which requires
efficient solution to process large data in distributed
and parallel manner. Map Reduce framework could
easily store and process large data sets. The key
contribution of this work is mentioned below:

i) Multilevel Partitioning: Ontology partitioning at
multilevel. The first level partition the ontology
from root and second level partitioning generated
the non-overlapping clusters.

ii) Parallelism: The input ontologies partition process
is computed in parallel, which leads to reduction in
computational complexity.

iii) IEI-Sub Matcher: An efficient linguistic matcher is
proposed for finding the anchors between the all
the entities of the both the input ontologies. This
process requires high computation.

iv) Map Reduce Based IEI-Sub Matcher: To overcome
the computational bottleneck of anchor discovery
phase, Mapper and Reducer based algorithm is
proposed to implement IEI-Sub Matcher to find the
anchors efficiently.

Methodology
The proposed framework MPP-MLO is described

in Fig. 1, which composed of four components
namely First Level Partitioning, Partitioned Ontology
Candidate Mapping, Second Level Partitioning, and
Final Alignments.

First Level Partitioning

In this module, pre-processing and entity document
creation is performed after which root level
partitioning is done as described in detail below.

Preprocessing

In this step, tokenization, Stop Word removal and
stemming are done on label, comments and name of
an entity. After this, the document for each entity of
the ontology is formed based on following:

(1) Structural connection SC(e,d) of an entity e ϵ E,
(E denotes entity set) is defined as in Eq.1

ሺ݁,݀ሻܥܵ = {ሺ݁,݀ሻݏݏ݈ܽܥ	ݎ݁݌ݑݏ	ᴜ	ሺ݁,݀ሻݏݏ݈ܽܥ	ܾݑݏ}
… (1)

where sub Class(ei,d) denotes the subclass or
children of e within d levels. The super Class(e,d)
denotes the super Class or the parents of e within d
hierarchical level in the ontology.

(2) Linguistic description contains all the human
readable information such as comments or labels
provided to that entity.

(3) Closeness centrality is the measure which reflects
the significance of nodes that are near to all other
ones present in the graph. In Eq. 2 the cost of
reaching all the nodes from one node is
calculated. The distance (i,j) denotes the function
to calculate the shortest path between the node i
and j in the graph, where jϵV, V is set of vertices
in graph.

 ܿܿሺ݅ሻ = 	1 ∑ ,݅)݁ܿ݊ܽݐݏ݅݀ ݆)௝⁄ … (2)

Root Level Partitioning
In this level of partitioning, it has been proposed

that the input ontologies should be partitioned from
root level. In all the previous work done9,10 for

Fig. 1—Framework for Multilevel Parallel Partitioning for
Efficiently Matching Large Ontologies

YADAV & DUHAN: MULTILEVEL PARALLEL PARTITIONING FOR MATCHING LARGE ONTOLOGIES

223

ontology matching using partitioning technique, main
concern is the memory and the computation time
consumed. Every entity is compared to all other
entities in the same ontology either to calculate their
intra similarity measures or for partitioning process.
In intra similarity measures, similarity between
entities present in input ontologies are calculated,
each entity present in ontology is assumed to be a
cluster and then merged. Suppose ontology contains
1500 entities, it means each entity will be compared
to other 1499 entities for intra-similarity measure.
Also, for partitioning process, each 1500 entities
assumed to be individual cluster and finally merged to
form final partitions. After following the same
procedure, both the input ontologies are divided into
partitioned ontologies known as clusters, and then
mapping between the partitioned ontologies from both
the input ontologies is done to find the candidate
mapping, which means the two most similar cluster
pair from both the input ontologies should be matched
further to get alignments. It requires lots of
computation time and space. Now suppose, in the
same ontology containing 1500 entities, there are only
30 entities which are directly connected with root
concept. So, without using much computation for
finding intra similarity and further applying complex
partitioning technique, the input ontologies can be
easily partitioned at first level. So, instead of
computing large n×m where n and m entities of input
ontology 1 and input ontology 2 respectively, the next
level of partitioning would be on k×l, where k,l are the
entities of sub-ontolgies generated after first level
partition and k<n, l<m.

Partitioned Ontology Candidate Mapping
This module is divided into two parts, one is to

uncover anchor using Map Reduce based IEI-Sub
(Improved EI-Sub9) matcher and other is to find
matchable sub-ontology pair.

Uncovering Anchor using IEI-Sub
Entity pairs showing high linguistic similarity are

known as anchors. Each sub-ontologies of input
ontology O is matched with each sub-ontology of
other input ontology O’ for uncovering anchors.
Entities in the sub-ontologies showing maximum
anchor similarity becomes matchable sub-ontology
pair for further alignment discovery. Without
partitioning, cartesian product of all entities of the two
large input ontologies needs to be processed for
finding alignment, but using partitioning only a
section of sub-ontology pair needs to be processed for

the same, this helps in saving major computational
time and space. Although, in this module of anchor
uncovering, the computation time for n and m entities
of input ontologies O & O’ would be high, as it will
require n×m comparisons.

In this system, efficient linguistic matcher IEI-Sub
derived from EI-Sub and using wrinkle11 is presented.
The proposed function in Eqs 3 & 4, finds the
commonality between string and used correction
coefficient p for the improvement of results. It
recursively finds the common substring and then
removes the common part and again starts with the
leftover part.
 ܵ݅݉௖௢௠௠ =

ଶ×∑ ௟௘௡(௖௢௠௠௢௡௦௧௥௜௡௚)೔௟௘௡(௘భ)ା௟௘௡(௘మ) … (3)

IEI-Sub(e1,e2) = ܵ݅݉௖௢௠௠ + (݉ + ݊) × ݌ × (1−ܵ݅݉௖௢௠௠) … (4)

where e1 and e2 are the entities in the sub-ontology
SO and SO’ respectively and m and n are the length of
common prefix (start of the string) and the length of
common suffix (end of the string) up to a maximum
of four characters respectively and p is constant
scaling factor to improve results, whose value is 0.1.
Similarity value is compared with threshold value, if
similarity value is greater than threshold value, two
entities will be called as anchor. It has been reported
by OAEI 2007 that 50% of the total alignment can be
generated using efficient linguistic matcher.

Map Reduce based IEI-sub

The proposed first level partitioning has decreased
the computational time required for anchor discovery
significantly, as the anchor discovery is only required
within the sub-ontologies generated after first level
partitioning. So, instead of comparing complete n×m
entities present in two input ontologies, system needs
to compare only a×b entities of sub-ontologies
candidate pair, where N,M are the entities in sub-
ontology 1 and sub-ontology 2 and N×M<n×m. Even
though the IEI-Sub matcher is computationally
efficient, the anchor identification process still
requires high computation time. With the
advancement of Big Data technology which provides
efficient solution to deal with high computation time
and storage problems, it can prove to be very
beneficial for finding anchor at this stage. So, in this
module hadoop 2.7.3 platform is used which works
on MapReduce framework. IEI-Sub matcher is
modulated as per the mapper and reducer function for

J SCI IND RES VOL 80 MARCH 2021

224

computation in distributed and parallel environment
for finding anchors. The proposed method based on
Map Reduce is described in algorithm(1–3) for the
Key Generation, Mapper and Reducer.

Algorithm 1:GenerateKey(Sub-Ontology1 as A,
Sub-Ontology 2 as B)
1. declare empty datafile C
2. for each row in datafile A
2.1 assign incremental numeric key as Id
2.2 append ID to data row
2.3 append field datasource with value “A” to each

row
3. for I in {1,N}, where N = number of rows in

datafile A:
3.1 assign ID column with value i
3.2 for each row in datafile B
3.2.1 append Id to data row
3.2.2 append field datasource with value “B” to each

row
3.2.3 append generated row to datafile C

Algorithm 2: Mapper(Id, Value):
1. for each Id:
1.1 get columns from datafile A
1.2 get colums from datafile B
1.3 create a commom structure to include values

from both A and B
1.4 Emit (Id, [name, label, comments, datasource})

Algorithm 3: Reducer(Id,Values):

1. Initiate variable PREV_ID to null
2. Declare array ARR
3. Def calculate(ARR):
3.1 split ARR to variables, NAME, LABEL,

COMMENTS, DATASOURCE
3.2 separate rows from datasource A and B
3.3 filter B for all relevant sub classes for A
3.4 for each item in B:
3.4.1 calculate similarity with A and assign to variable

RESULT
3.4.2 Emit (Id, RESULT)
4. For each row in streaming input:
4.1 get ID from row
4.2 if PREV_ID is null or PREV_ID=ID:
4.2.1.1 append Values to ARR

else:

4.2.1.2 call function calculate(ARR)
4.2.1.3 empty ARR

4.2.1.4 set PREV_ID = ID

The linguistic similarity of label, comment and
name between the entity pairs are calculated at the
reducer level. The similarity value assigned to the
entity pair is the highest linguistic similarity value
calculated between the entity pair using their label,
comment and local name. Only the entity pair having
similarity value higher than the given threshold value
qualifies as the anchor, whereas the remaining entities
are simply ignored. Therefore, the output generated
from the framework is fewer than n×m records. The set
of anchors are the output produced from this
framework, where it corresponds to <Key-Value> Pair.
The key represents the distinctive entity pair identity
and the value represents the similarity among them.

Partitioned Ontology Candidate Mapping
The anchor discovered in previous section was

used to find the matchable sub-ontology pairs. If the
two sub-ontologies share maximum number of
anchors, then these two sub-ontologies are identified
as matchable sub-ontology pair. Linguistic similarity
implies the possibility of discovering more number of
alignments. Therefore, if two sub-ontologies share
high linguistic similarity, it means there is high
probability of finding more alignments between them
and presented in algorithm 4. Let O1 and O2 represent
two input ontologies, SO1 represents the set of
sub-ontologies generated after first level partitioning
of input ontology O1, ns1 is the number of sub-
ontologies in SO1. Similarly, SO2 represents the set of
sub-ontologies generated after first level partitioning
of input ontology O2 and ns2 is the number of
sub-ontologies in SO2. The calculation based on
which matchable sub-ontology pair is identified is
shown in Eq. 5. It is the ratio between the anchors
shared between two sub-ontologies to the total
number of anchors present in them.

So_sim(sc1i,sc2j)= ∑ ∑ ଶ௔௡௖௢௥(ୱୡଵ୧,ୱୡଶ୨)౤౩మೕసభ౤౩భ೔సభ∑ ௔௡௖௢௥൫௦௖ଵೖ,௦௖ଶೕ൯ೞ೎భೖചೄೀభ ା∑ ௔௡௖௢௥(௦௖ଵ೔,௦௖ଶೖ)ೞ೎మೖചೄೀమ

… (5)

Algorithm 4: Matchable SubOntology Pair

Input: Set of two SubOntologiesSO1 and SO1, ns1 is
the number of sub-ontologies in SO1, ns2 is the
number of sub-ontologies in SO2

Output: Set of Matchable subontology pair, MS

γ=0.75, i=1, j=1

YADAV & DUHAN: MULTILEVEL PARALLEL PARTITIONING FOR MATCHING LARGE ONTOLOGIES

225

//calculating the share anchor between two sub-
ontology pair (sc1i, sc2j)

for each i in range(0, ns1)
for each j in range(0, ns2)
shared_anchor+=ܽ݊ܿℎݎ݋(sc1i, sc2j)
end
end

//total number of anchor between two sub-ontology
pair

for each 1ܿݏ௞߳ܵ ଵܱ
tot1+=ܽ݊ܿℎ1ܿݏ)ݎ݋௞ , (2௝ܿݏ	
end
for each ܽ݊ܿℎ1ܿݏ)ݎ݋௞ , (2௝ܿݏ
tot2+=ܽ݊ܿℎ1ܿݏ)ݎ݋௜ , (2௞ܿݏ
end

//Calculating similarity between two sub ontology
pair

For each subontology in SO1

For each sub-ontology in SO2

So_sim(sc1i, sc2j) =
௦௛௔௥௘ௗ_௔௡௖௛௢௥௧௢௧ଵା௧௢௧ଶ

If((So_sim(sc1i, sc2j)>γ)
MS= MS U (sc1i, sc2j)
end
end

The function anchor (sc1i, sc2j) computes the total
number of anchors between the sub-ontology sc1i and
sc2j where sc1iϵ SO1 and sc2jϵ SO2. Threshold value,
α[0,1] is also set to describe the criteria for minimum
similarity. If the sub-ontology pair value is greater
than the threshold value, they are identified as
matchable sub-ontology pair. Due to the discovery of
matchable sub-ontology pair, further alignment
computation would decrease greatly.

Second Level Ontology Partitioning

Once the matchable sub-ontology pair is formed
after candidate mapping process, these pairs are
provided as an input for second level ontology
partitioning to generate non-overlapping clusters. In
this module, the second level partitioning of each sub-
ontology of matchable sub-ontology pairs is done in
parallel, thus reducing the computation time of cluster
formation. Also, all the further computation is applied
only on each pair of matchable sub-ontology rather
than comparing each sub-ontology pair to other (n-1)
sub-ontology pair, where n is the sub-ontology pairs
generated after mapping process. So, to further

partition the matchable sub-ontology pair sc1i and sc2j
where sc1iϵ SO1 and sc2i ϵ SO2 respectively in parallel
to generate groups of disjoint clusters x1,x2,x3…….xk, for
each sub-ontology such that the cohesion among the
entities in the clusters should be high and the coupling
between the entities of clusters should be low. Based
on this goal, second level partitioning is shown in
algorithm 5 and its process is described in detail in the
following sections.

Finding Number of Partition

Typically, if the objective criterion is not defined
then determining the number of partition of a given
ontology is done using trial and error technique to
find out the optimal number of partitions.

Entity Score Function

All the entities in the ontology are ranked based on
the entity itself and its neighbors. More is the score of
the entity, significant is the entity and hence is chosen
as cluster head. Score function should be
computationally efficient and also effective. So, the
entity score function to calculate the score of each
entity is based on two parameters namely structural
connection and closeness centrality. Each entity’s
document contains information about these
parameters as described previously. If the entity has
more surrounding nodes, it means it has more
structural connection, thus having more score.
Similarly, high is the closeness centrality, high is the
score of the entity. Entity score function then
calculates the score of each entity based on the given
two parameters as shown in Eq. 6.
 Entityୖୟ୬୩ୗୡ୭୰ୣ = 	SC(e, d) + 	CC	(e) … (6)

where SC(e,d) is the structural connection as in
Eq.(1) and CC(e) is the closeness centrality as in Eq. 2.

Determining Cluster Head (CH)

Once the score of each entity is computed by entity
score functions, next task is to select the cluster head.
If node with the highest score is chosen randomly as
cluster head, there would be problem of distribution
of the cluster head in the given graph. So to overcome
this problem, a minimum of d distance is kept
between two chosen entities as cluster head.

Non-overlapping Cluster Creation

In this module, each cluster is assigned under one
cluster head, and all its direct sub classes or child
nodes are placed in the cluster. The leftover entities

J SCI IND RES VOL 80 MARCH 2021

226

are placed using a membership function, which
computes the leftover entity’s membership to each
cluster head and thereby assign those entities to the
right cluster. Due to directly placing the child nodes
into the cluster in this module is computationally
efficient, as it saves lot of time in comparison and
computing membership.

Algorithm 5: Second Level Partitioning

Input: Set of entities E in sub-ontology after first
level partitioning, n number of optimal partitions

Output: Set of Cluster X

STEP 1: Calculating each entity score using ranking
function
 Entityୖୟ୬୩ୗୡ୭୰ୣ = 	SC(e, d) + 	CC	(e)

STEP 2: Determining ‘n’ cluster head:Entities having
highest RankScore is determined as Cluster head
with‘d’ distance apart.

STEP 3: All each cluster is assigned under one
cluster head, and all its direct sub classes or children
are placed in the cluster.

STEP 4: Each leftover entity is compared with
Cluster head based on membership function and entity
sharing maximum similarity value with the cluster
head, is assigned to that particular cluster.
௜݁)	݊݋݅ݐܿ݊ݑܨ	݌ℎ݅ݏ	ݎܾ݁݉݁ܯ =(௜ܪܥ, ߙ	 × ௜݁)	ܥܵ (௜ܪܥ, + ௜݁)	ܵܰ	ߚ +(௜ܪܥ, ߛ × ܵܵ	(݁௜ (௜ܪܥ,

STEP 5: Set of cluster generated is given as output.

Membership Function
At this stage, the direct child nodes of the cluster

heads have already been placed in clusters. Next task is
to build some membership function which can
correctly categorize entity ei ϵ E to the cluster Xi, i<= k.
First of all, the remaining entities are assigned a
variable assign whose default value is false, once the
membership function is applied to the entity and it is be
placed in some cluster, the value of assign variable is
changed to true. Each entity is placed only in one of the
cluster which results in non-overlapping clusters.
Instead of comparing the leftover entities to all the
other entities in the cluster, it is only compared with
cluster heads. The similarity value between entities and
each cluster heads is calculated using membership
function, and entity sharing maximum similarity value

with the cluster head, is assigned to that particular
cluster. The membership function in Eq. 7 considers
combination of three parameters to calculate overall
similarity, such as structural connection, naming
similarity and semantic similarity between the entity ei

and CHi as follows:
௜݁)݊݋݅ݐܿ݊ݑܨ݌ℎ݅ݏݎܾ݁݉݁ܯ (௜ܪܥ, = ߙ	 ௜݁)ܥܵ× (௜ܪܥ, + ߚ × ܰܵ(݁௜ (௜ܪܥ, + ߛ × ܵܵ(݁௜ (௜ܪܥ,

… (7)

where α,β,γ are constants and denote the importance
given to each parameter and α+β+γ=1, SC(ei,CHi),
NS(ei,CHi), SS(ei,CHi) are the structural connection,
naming similarity and semantic similarity between
entity and cluster head respectively. The structural
connection measures the neighborhood similarity
between entity and cluster head. More the number
common neighbors both will share, more is the
similarity value between entity and cluster head. The
naming similarity measures the label or name of entity
and corresponding cluster head. Researchers12 showed
that the name of nodes is the most dominant feature.
For this purpose, the Levenshtein distance is used, also
called string edit distance. The semantic similarity
measures the semantic relation shared between entity
and the cluster head such as hypernym, hyponym etc.

Matchable Cluster Pair and Alignment Discovery

Once the clusters are generated after applying
second level partitioning on sub-ontology pairs, next
step is to find anchors among them and then at last
discovering matchable cluster pair for finding
alignment using the same process as proposed in
partitioned ontology candidate mapping. However,
the anchor discovery is already done using IEI-sub
method and the MapReduce framework. Therefore,
only matchable cluster pairs are discovered in this
section. All the matchable cluster pair generated as
output will pass on to the powerful linguistic matcher
VDoc13 and then to GMO matcher14 for final
alignment discovery as done in other researches.9,10

Experimental Results
To prove the efficiency and the scalability of the

proposed multilevel ontology matching system,
different sizes of ontologies datasets are taken into
account. The small ontology pair such as Toursim AB
and Russia 12, used for partitioning, can be retrieved
from http://ws.nju.edu.cn/falcon-ao/. Other large scale
ontology taken into account such as FMA–NCI, NCI–
SNOMED (40%), FMA–SNOMED (40%) can be
downloaded from OAEI (Ontology Alignment

YADAV & DUHAN: MULTILEVEL PARALLEL PARTITIONING FOR MATCHING LARGE ONTOLOGIES

227

Evaluation Initiative). The enormous computation is
required to match these three large pair of ontologies
depending upon the number of matching used, more
the number of matcher required in matching the
ontologies pair, more would be the computation
required. The experimental results are divided into
number of phases such as F-measure and execution
time using partitioning and without partitioning,
anchor identification, IEI-Sub matcher and the
experiment on precision, recall and F-measure.

Experiment on Partitioning and without Partitioning
This experiment demonstrated the requirement for

partitioning of large ontology in ontology matching
systems. The proposed system is transformed to find
the alignment between the input ontology without
partitioning. As shown in Fig. 2, MPP-MLO proved to
be more efficient with partitioning as compared to
without partitioning, although the accuracy of the
system is slightly compromised due to the fact that the
cartesian product of all the entities are not computed in
case of MPP-MLO with partitioning. The computation
required in MPP-MLO without partitioning is very
high as compared to MPP-MLO with partitioning.

Experiment on Anchor Identification
The execution time required for discovering the

anchors among the entities pair based on IEI-Sub, EI-
Sub, I-Sub and SI-Sub are shown in Table 1. Although
the execution time taken by IEI-Sub is almost same as of
EI-Sub, and on an average, it is reduced by 13.4% as
compared to the execution time taken by I-Sub. It can be
clearly inferred that the SI-Sub execution time is less
than ISI-Sub as the latter used very naïve similarity but
in the following experiment, it is observed that this
method is less effective as compared to others. The
matchable cluster pair and the matchable sub-ontology
pair are identified only on the basis of anchors
discovered which further helps in finding final
alignment set. Therefore, choosing the right matchable

cluster pair is the crucial task for the overall ontology
matching system.

Experiment on IEI-sub Matcher using MapReduce
In this experiment, anchor discovery using IEI-Sub

over different number of nodes in Hadoop
environment and using three large ontologies pair are
compared and shown in Fig. 3. It can be observed that

Fig. 2—Execution & F-measure of MPP-MLO and MPP-MLO
without partitioning

Fig. 3— Execution time by MapReduce based IEI-Sub for anchor
identification

Table 1— Execution time comparison for anchor identification of
Falcon, LOMPT, PSOM2 and MPP-MLO

 FMA–NCI FMA–SNOMED
(40%)

NCI–SNOMED
(40%)

Falcon
(I-Sub)

44, 214 148, 392 106, 448

LOMPT
(SI-Sub)

35, 623 117, 267 84, 413

PSOM2
(EI-Sub)

39, 919 125, 192 90, 118

MPP-MLO
(IEI-Sub)

39, 515 124, 784 89, 798

J SCI IND RES VOL 80 MARCH 2021

228

there is almost 51.5% reduction in execution time for
FMA–NCI and in case of NCI– SNOMED (40%) and
FMA– SNOMED (40%) there is a reduction of 57.5%
and 54.8% in execution time respectively. This proves
that MPP-MLO achieves reduction in execution time
and hence more scalable as compared to other
existing ontology matching systems.

Experiments on Performance Measure
The main motive of proposing this ontology

matching system, MPP-MLO is to achieve high
accuracy, better efficiency and the scalability.
FMA–SNOMED (40%), FMA–NCI and NCI–
SNOMED (40%) are the pair of ontologies used for
the evaluation. In this experiment, precision, recall
and F-measure are evaluated as shown in Fig. 4.
Based on the experiment and the results shown, it can
be infer that the MPP-MLO achieve better accuracy
as compared to PSOM and the LOMPT, due to
multilevel partitioning and the IEI-Sub. Although,
MPP-MLO precision is less than Falcon with a small
margin, this is due to the fact that Falcon uses robust
and high computational linguistic matcher to indentify
anchor which in turn contributes in overall findings of

alignments. The F-measure also shows that the MPP-
MLO is effective than the other ontology matching
systems.

Experiments on Total Execution Time
Finally, the total execution times used by all the

ontology matching system for finding out the final
alignments are compared in Table 2. It is observed that
almost 58.9% reduction in the execution time when
compared with Falcon and specifically for NCI–
SNOMED (40%), the reduction in execution time is
around 61.7%. In case of LOMPT, the reduction in
execution time is almost 50.3% and specifically for
NCI–SNOMED, the reduction in execution time is
55.5%. In case of PSOM, the execution time is almost
same, but the accuracy of the proposed system is more.
As is can be proved seeing the results that MPP-MLO
has better efficiency as compared to others.

Conclusions
In this work, a novel multilevel parallel partitioning

based ontology matching technique is proposed, which
targets efficiency and effectiveness over the state of the
art ontology matching technique. There is 58.7%
reduction in execution time of the proposed system as
compared to other existing approaches. In large scale
ontology, as the size of cluster should be less for better
computation time and space, so this is well achieved
using partitioning at two levels without incurring extra
overheads. The efficiency and the computational time
are increased by 78.9% using concept of partitioning.
The proposed system used MapReduce framework to
handle the most time consuming process of finding
anchor in order to achieve better scalability in parallel
and distributed manner. On an average, 54.6%
reduction in execution time using MapReduce
framework. To discover the anchors set, a light weight
and efficient linguistic matcher called IEI-Sub is
proposed. The execution time of IEI-Sub is reduced by
13.5% as compared to I-Sub. Also for second level
partitioning, non overlapping clusters are formed using
score, ranking function and membership function,
which increases the quality of the clusters formed.

Fig. 4— Precision, Recall and F-Measure of Falcon, LOMPT,
PSOM and MPP-MLO

Table 2—Comparison of execution time of Falcon, LOMPT,
PSOM and MPP-MLO

 FMA–NCI FMA–SNOMED
(40%)

NCI–SNOMED
(40%)

Falcon 47,745 165,480 135,694
LOMPT 38,896 133,376 116,701
PSOM2 24,200 67,400 52,000
MPP-MLO 23,987 67,174 51,875

YADAV & DUHAN: MULTILEVEL PARALLEL PARTITIONING FOR MATCHING LARGE ONTOLOGIES

229

References
1 Selvi M S, Deepa K, Sangari M S & Mohankumar B,

Improved Structured Robustness (I-SR): A Novel Approach
to Predict Hard Keyword Queries, J Sci Ind Res 76 (2017)
38–43.

2 Belhadi H, Akli-Astouati K, Djenouri Y & Lin J C W, Data
mining-based approach for ontology matching problem, Appl
Intell, 50(4) (2020) 1204–1221, doi:10.1007/s10489-019-
01593-3.

3 Xue X & Chen J, Using Compact Evolutionary Tabu Search
algorithm for matching sensor ontologies, Swarm Evol
Comput, 48 (2019) 25–30, doi:10.1016/j.swevo.2019.03.007.

4 Stevens R, Lord P, Malone J & Matentzoglu N, Measuring
expert performance at manually classifying domain entities
under upper ontology classes, J Web Semant, 57 (2019)
100469, doi:10.1016/j.websem.2018.08.004.

5 Li Y, Jianhui Z, Liu J & Hou Y, Matching large scale
ontologies based on filter and verification, Math Probl Eng,
2020 (2020), doi:10.1155/2020/8107968.

6 Laadhar A, Ravat F, Ghozzi F, Teste O, Megdiche I &
Gargouri F, Partitioning and local matching learning of large
biomedical ontologies, Proc ACM Symp Appl Comput,
F1477 (2019) 2285–2292, doi:10.1145/3297280.3297507.

7 Zhuang L, Schouten K & Frasincar F, SOBA: Semi-
automated Ontology Builder for Aspect-based sentiment
analysis, J Web Semant, 60 (2020) 100544,
doi:10.1016/j.websem.2019.100544.

8 Mountasser I, Ouhbi B & Frikh B, Hybrid large-scale
ontology matching strategy on big data environment, ACM
Int Conf Proceeding Ser, (2016) 282–287.
doi:10.1145/3011141.3011185

9 Hu W, Qu Y & Cheng G, Matching large ontologies: A
divide-and-conquer approach, Data Knowl Eng, 67(1) (2008)
140–160, doi:10.1016/j.datak.2008.06.003

10 Sathiya B, Geetha T V & Saruladha K, PSOM2—
partitioning-based scalable ontology matching using
MapReduce, Sadhana - Acad Proc Eng Sci, 42(12) (2017)
2009–2024, doi:10.1007/s12046-017-0742-5

11 Winkler W E, The state of record linkage and current
research problems, Stat Res Div US Census Bur (1999) 1–15,
doi:10.1.1.39.4336

12 Lin F & Sandkuhl K, A survey of exploiting WordNet in
ontology matching, in IFIP International Federation for
Information Processing, Vol 276 (Springer, Boston, MA)
(2008) 341–350. doi:10.1007/978-0-387-09695-7_33

13 Zhang H, Hu W, Qu Y. Constructing virtual documents for
ontology matching using mapreduce, in Lecture Notes in
Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
Vol 7185 LNCS (Springer, Berlin, Heidelberg) (2012)
48–63, doi:10.1007/978-3-642-29923-0_4

14 Hu W, Jian N, Qu Y & Wang Y, GMO: A graph matching
for ontologies, in CEUR Workshop Proceedings, Vol 156,
(2005) 41–48.

