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K Lakshmi1*, Varun Kasi Reddy2 and A Rama Mohan Rao1 

1CSIR-Structural Engineering Research Centre, CSIR Campus, Taramani, Chennai 600 113, Tamilnadu, India 
2Dept of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States 

Received 06 September 2020; revised 03 February 2022; accepted 06 May 2022 

In this paper, identification of the natural frequencies, damping ratios and mode shapes of the structures using the 
measured ambient responses are proposed using time-frequency analysis. The impulse responses are obtained from the 
measured acceleration time history data through cross-correlations. Empirical Mode Decomposition (EMD) is employed on 
these generated impulse responses to obtain Intrinsic Mode Functions (IMFs). Finally, modal identification of the structure 
is carried out by performing Hilbert Transform (HT) on these generated IMFs. To avoid the problem of mode mixing during 
EMD of the signal, an improved version with intermittency criteria along with treatment to end effects during sifting is 
proposed in this paper. Experimentally measured data of Guangzhou New TV (GNTV) Tower is used to test and verify the 
proposed algorithm. The studies indicate that the proposed HHT based algorithm can be applied quite effectively for the 
modal identification of practical engineering structures. 
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Introduction 
Accurate estimation of modal parameters are 

essential for important tall buildings/towers subjected 
to strong wind or earthquake loads and also bridges 
under ambient loads to predict the true response of 
these structures. Apart from this vibration-based 
structural health monitoring techniques also require 
the accurate assessment of these modal parameters to 
characterize the damages in the structures. The 
structural damping is rather difficult to estimate for 
long-span bridges and tall built-up structures. 
However, damping plays a major role in the measured 
structural response due to external excitations.  

Ambient vibration tests are often carried out on 
civil engineering structures like buildings and bridges 
to obtain the required dynamic responses. Since it is 
difficult to measure the ambient input forces which 
include natural forces like wind, and earthquake 
excitations, several algorithms are developed for 
structural modal identification using the measured 
ambient response data.  

Time domain based techniques for modal 
identification are more popular and are being widely 
used. Since the proposed algorithm also comes under 
the time domain, we focus more on the time domain 

algorithms. Since these time domain algorithms work 
more effectively with impulse responses derived from 
the measured ambient responses, random decrement 
technique1 is popularly being used to preprocess and 
convert the ambient raw measured data to free decay 
responses. Modal parameters are subsequently 
estimated using these free decay responses by 
employing the traditional time domain methods.2,3 
However, later time series models based techniques4,5 

are proposed, which can directly use the measured 
ambient vibration responses for modal parameter 
identification. Stochastic Subspace Identification 
(SSI)6, Natural EXcitation Technique with the Eigen 
system Realization Algorithm (NEXT-ERA)7, Blind 
Source Separation (BSS)8 and an online modal 
extraction technique based on Bayesian formulation9 
are some of the recently reported techniques in the 
literature. All these recently proposed algorithms are 
being widely used for modal parameter extraction of 
practical engineering structures. Modal identification 
using Autoregressive (AR), SSI, NEXT-ERA and 
BSS methods is carried out with the assumption that 
the measured responses are obtained from structures 
subjected to white noise excitations. Even though 
BSS and Autoregressive with Moving Average 
(ARMA) based techniques can work without such 
strict assumptions, they are much more complex when 
compared to the other algorithms listed. The major 
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issues with the majority of the aforementioned 
algorithms lie in the discrimination of structural 
modes and also the determination of modal order. 
Among the modes extracted, spurious (or 
computational) modes also will be present apart from 
physical modes of the structure and it becomes 
difficult to distinguish them. These computational or 
rather spurious modes account for the noise present in 
the signal, leakage, non-linearity and other 
characteristics which are not modelled. Several modal 
validation techniques and also an array of modal 
indicators are reported in the literature to distinguish 
the structural modes from the other spurious modes. 
Stability diagrams are being popularly used for this 
purpose. However, over the years of investigations on 
the aforementioned techniques indicate that these are 
moderately successful and several limitations still 
exist while extracting modal parameters for practical 
engineering structures. Some of such limitations are 
outlined here. If any dominant frequency apart from 
white Gaussian noise is present in the excitation force, 
then it is difficult to isolate such frequencies from the 
structural natural frequencies while using methods 
like SSI. As mentioned earlier, SSI works under the 
assumption that excitation force is Gaussian white 
noise. Most of these Operational Modal Analysis 
(OMA) techniques exhibit considerable difficulty in 
extracting closely spaced modes of the structure. The 
majority of the discussed OMA techniques are finally 
reduced to a set of simultaneous equations and least 
square techniques are generally employed to solve. 
Therefore due to measurement noise and leakage 
errors during measurements, there is a strong 
possibility of bias and variance errors creeping into 
the solutions. Further, the majority of the 
aforementioned techniques suffer from severe 
inaccuracies in modal identification, when applied to 
complex structures with active or passive dampers. 
Similar problems exist with high or moderately high 
damped structures10 and also with closely spaced 
modes. Because of the above limitations, researchers 
are currently looking at techniques based on time 
scale analysis like wavelet-based techniques and time-
frequency analysis like Hilbert Huang Transform 
based techniques with more interest.11–13 

Among several choices of time-frequency analysis 
like Short Term Fourier Transform (STFT), Hilbert 
Huang Transform (HHT), wavelets etc., HHT14 is 
widely being applied to process the vibration 
responses of civil engineering structures which in 

most instances happens to be non-stationary signals.12 
HHT has drawn much attention in recent times for 
structural parameter identification as it has better 
frequency resolution to evaluate natural frequencies 
with very low energy leakage.15 It is also reported that 
in comparison with other time-frequency analysis, 
HHT is more immune to the noise present in the 
measured signals.16 

HHT is employed to identify modal parameters of 
multi-degrees of freedom structures using free 
vibration responses and is later extended to determine 
system parameters like modal stiffness, modal mass 
and modal damping matrices of the structures.17,18 
Modal identification techniques using ambient 
vibration responses are later developed by employing 
HHT on free responses obtained by pre-processing the 
measured time history signals with random decrement 
technique.19 Subsequently, modal parameters of tall 
buildings are identified based on HHT using 
measured ambient wind vibration data.19 The Sutong 
Cable-Stayed Bridge is monitored for one year using 
HHT by Mao et al.20 to investigate the long term 
variations in the modal frequencies. Similarly, 
HHT is combined with variation mode decomposition 
for modal parameter estimation of structures by 
Bagheri et al.21 Apart from this, HHT is successfully 
employed for Structural Health Monitoring (SHM) 
including railway bridges, bearing faults in induction 
machines, safety of beam ridge structures under 
vehicular load etc.22–25 

Despite reporting several successful applications of 
HHT for engineering structures, still, several issues 
remain to be addressed while using HHT. One of the 
major issues is that EMD suffers from mode mixing 
and end effects because of the influence of cubic 
spline interpolation, which significantly affects the 
identification accuracy of HHT. In the proposed HHT 
based modal identification technique we use an 
improved EMD procedure with intermittency criteria 
to handle mode mixing. Similarly, end effects are 
handled using the signal extension technique based on 
a second-order autoregressive model. Apart from that, 
we use cross-correlated responses to obtain free 
responses from ambient vibration data instead of the 
RD technique traditionally being employed in HHT 
based modal identification methods. Detailed 
analytical formulations are also presented in this 
paper to show the effectiveness of the cross-correlated 
responses in effectively handling noise, stationary and 
non-stationary components of the measured signals. 
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Therefore, the proposed HHT based modal 
identification method is less sensitive to measurement 
noise. The measured ambient acceleration time 
history responses of the GNTV tower are used to 
evaluate the performance of the proposed algorithm. 

Theoretical Considerations 

Hilbert–Huang Transform (HHT) 
The HHT on a signal is performed in two steps. In 

the first step, the signal is first split into several mono 
component signals using an empirical method, it is 
called Empirical Mode Decomposition (EMD). The 
time-frequency resolution of the signal is obtained by 
performing Hilbert-Transform (HT) on each of the 
monocomponent signals generated in the first step. 
Empirical Mode Decomposition14 is a self-adaptive 
multi-resolution signal decomposition technique. It 
splits adaptively a complex signal without any prior 
knowledge of its frequency contents, into a set of 
oscillatory mono components called Intrinsic Mode 
Functions (IMFs), from the high frequency to low 
frequency by a process known as sifting. These IMFs 
will have the same numbers (or almost differing by 
one) of zero-crossings and extreme, and also have 
symmetric envelopes defined by local maxima and 
minima respectively. In the EMD process, the local 
maxima and minima points of the signal z(t) are 
first identified and then, using cubic spline 
interpolation, envelopes for these identified local 
maxima and minima are formed. The moving mean 
values of these two envelopes are evaluated and 
subtracted from the signal, z(t). This process called 
sifting is repeated until the subtracted signal zc1(t) is 
qualified as IMF by satisfying the two conditions 
mentioned earlier. Once zc1(t) is obtained, the residual 
signal is evaluated by subtracting zc1(t) from the 
original signal z(t). Similarly, by repeating the above 
sifting process on the residual, the next IMF, zc2(t) is 
obtained. The rest of all the desired IMFs are 
determined by repeatedly using this sifting process. 
Combining all the IMFs and the residual rsm(t), the 
original signal can be generated 
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where, ( )ka t , ( )k t , and ( )k t  are the instantaneous 

amplitude, phase and frequency, of the kth IMF 
respectively. We can represent the originally measured 
time history signal of nth sensor node (without the 
residue, 

nr (t)) as the real part of the sum of the Hilbert 

transforms of all the IMFs generated using EMD. 
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Eq. (7) gives the time-frequency resolution of the 
time history signal z(t) and is called as Hilbert 
spectrum, ( , )H t . The time-frequency resolution of a 
nonlinear and/or non-stationary signal can be 
identified using this Hilbert spectrum. 

Cross-Correlation of Time History Signals 
The measured vibration responses of structures will 

inevitably be corrupted with measurement noise. 
Because of this, the system or modal identification 
techniques need to be more immune to the 
measurement noise. Otherwise, the identification 
results may be highly distorted due to noise. The 
measured noise corrupted responses obtained from a 
sensor placed on the structure can be written as  

�̃�ሺ𝑡ሻ ൌ 𝑧ሺ𝑡ሻ ൅ 𝜉ሺ𝑡ሻ  … (8) 

where, �̃�ሺ𝑡ሻ ൌ ሾ�̃�₁ሺ𝑡ሻ, �̃�₂ሺ𝑡ሻ, . . . . . . �̃�ₙሺ𝑡ሻሿ் is the 
measured acceleration time history response of 
the structure. As mentioned earlier, these responses 

are corrupted with measurement noise. 1( ) [ ( ),  z t z t
T

2( ),......... ( )]nz t z t is the noise-free acceleration 

time history response and 1( ) [ ( ),  ξ t ξ t
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    T
2 ,......... ]nξ t ξ t is the zero mean unit variance 

( 2 ) Gaussian white noise. 
Let us choose two typical spatial locations, say ‘r’ 

and ‘s’ where the accelerometers are placed on the 
structure. The cross-correlated responses, ,rsR of the 
time history measurements at locations ‘r’ and ‘s’ can 
be evaluated as  

𝑅௥௦ሺ�̃�௥ሺ𝑡ሻ, �̃�௦ሺ𝑡 ൅ 𝜏ሻሻ ൌ 𝐸ሾ�̃�௥ሺ𝑡ሻ, �̃�௦ሺ𝑡 ൅ 𝜏ሻሿ 
ൌ 𝐸ሾሺ𝑧௥ሺ𝑡ሻ ൅ 𝜉௥ሺ𝑡ሻሻ, ሺ𝑧ₛሺ𝑡 ൅ 𝜏ሻ ൅ 𝜉ₛሺ𝑡 ൅ 𝜏ሻሻሿ

    ( ) z ( ) r s r sE z t t E z t t            
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In the above equation, the terms

     ( )     r s s rE z t t and E z t t            will vanish

as the time history responses and the measurement 
noise are uncorrelated. Similarly, the term 

     r sE t t   will also vanish when  0  and

    2
r sE t t        , when 0 . 2 , is the

variance of the measurement noise. 
The ambient excitation, f(t) consists of stationary,
( )stf t , non-stationary, ( )nstf t , random components. 

Similarly, the nonstationary component is a 

combination of periodic, ( )p
nstf t , and periodic, ( )p

nstf t
 ,

components. Accordingly, the external ambient 
excitation, f(t), can be represented in the split form as. 

( ) ( ) ( ) ( )   p p
st nst nstf t f t f t f t   … (10) 

Generally, if 2 2[ ( )] [ ( )]st nstE f t E f t , the excitation is 
considered stationary, else, it is nonstationary. 
Similarly, the measured structural responses will also 
contain both stationary and nonstationary components 
corresponding to stationary and nonstationary 
components of ambient excitations. Therefore, the 
responses can also be split similar to the ambient 
excitation given in Eq. (10). Accordingly, the 
structural responses at sensor locations ‘r’ and ‘s’ in 
the split form are  
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௣ሺ𝑡ሻ ൅ 𝑍௥
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௣ሺ𝑡ሻ ൅ 𝑍௦

௣෤ሺ𝑡ሻ  … (11) 

The response components subjected to random 
stationary, periodic and aperiodic excitations are 
represented with superscripts ‘st’, ‘p’, and p  
respectively in Eq. (11). The cross-correlated 

response corresponding to sensor nodes ‘r’ and ‘s’ 
given in Eq. (11) can be written as  
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We can write the stationary and periodic 
components from Eq. (13) as  
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where, sn and k represent the total number of exciting 

frequencies by the stationary and periodic excitations 

respectively. rsB  represent the modal coefficient of 

nodes r and s. ω  is the natural frequency. Similarly,

ωd ,  , and are the damped natural frequency, 
damping ratio, and the phase respectively, of the 
corresponding mode. The superscripts j and h 
represent the frequency number excited by the 
stationary and periodic random excitations 
respectively. Combining the Eqs (14) and (15) which 
are similar, and adding the remaining noise component, 
Eq. (12), can be conveniently represented as  

     
s

j
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1 2
j=1
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where, j
rsC is the amplitude of the jth mode of the

response rsR . Using EMD on Eq. (16) finite number 

of IMFs and a residue can be generated 


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residue  rsr 1 2r(τ) t ,t . This residual part consists of 

measurement noise and also the components of the 
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response which do not contain the modal information 
i.e., response under aperiodic excitations. From this
formulation, it is clear that using the cross-correlated
responses, the time history response of a structure
under ambient excitation (consists of both stationary
and nonstationary components) can be split into a
finite set of IMFs using empirical mode
decomposition. We also notice that non-modal
components of the response including noise can be
conveniently isolated to a larger extent using this
formulation. Taking time difference T as a variable,

the first IMF, ( )j
rsC t  can be written as:  

 ( )
( ) sin ( )

     
j

j n t Tj j j j
rs rs d rC B e  … (18) 

Hilbert transform of the first IMF, ( )rsC T , denoted 

by ( )rsC T  can be obtained as  

𝑍௥௦
௝ ሺ𝑇ሻ ൌ 𝐶௥௦

௝ ሺ𝑇ሻ ൅ 𝑖𝐶ሚ௥௦
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௝ ሺ𝑇ሻ𝑒௜ఏೝೞ
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where, 
( )

( )
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j
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rs rsA T B e   … (20) 

   j j j
rs d rT t T( )   ( )  … (21) 

From Eqs (20) and (21), we can obtain 
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The slope of the ‘phase angle  j
rs  Vs time’ plot is

evaluated using the linear least-squares technique12 to 

compute j
d . Similarly, using the plot ‘ ln ( )j

rsA T Vs 

time’, the decaying amplitude slope      j
j n  is 

evaluated. The desired modal parameters can be 
evaluated using these two values as 

    j
j n1    and    j j

d n j
2

2  =   1  … (24) 


 
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2
1

2 2
1 2( )

 … (25) 

  j
n  can be obtained from Eq. (24). 

EMD with Intermittency 
The non-stationary time history signal 

reconstructed using HHT are complete, orthogonal, 
local and adaptive. Therefore the IMFs generated 

through EMD should also reflect these properties. 
However, the IMFs generated using sifting cannot 
ensure good quality. It is mainly due to the large 
swings at both ends of the signal, due to the spline 
fitting process during sifting. These spurious swings 
propagate to the inner portions of the signal and 
distract it completely. This ultimately results in 
producing poor intrinsic mode functions.  

The large swings are more prominent particularly 
when the components of lower frequencies are 
contained in the signal. Apart from this, the quality of 
sifting will be inferior, especially in the signals with 
closely spaced frequencies. In this case, the generated 
IMFs reflect more than one frequency and sometimes 
a few pseudo components too. Several versions of 
EMD are proposed in the literature to alleviate this 
issue. One of the most popular techniques and among 
them is the EMD with intermittency criteria, 
originally proposed by Yang et al.19 to capture the 
intermittent components in the signal. Later Gao et 
al.26 proposed an alternative approach and eventually, 
several investigations are performed by the 
researchers to improve the EMD for extracting IMFs. 
Since the basic requirement of the proposed modal 
identification technique is to extract the true IMFs so 
that they represent the individual modal response, an 
EMD process with intermittency criteria is 
implemented. The details of the present 
decomposition process are detailed below. 

An intermittent frequency if  is imposed in the 

sifting process in such a way, that every IMF 
generated consists of only one frequency component 
in it. A band-pass filter is used during the sifting 
process to retain only the desired single frequency 
component, if  in the IMF and eliminate the rest of 

the frequency components. Initially, the frequency 
spectrum details of the signal are obtained by 
performing the Fast Fourier Transform (FFT). The 
identified resonant frequencies of the structure from 
the frequency spectrum are divided into mn number of 

partitions such that each partition contains only one 

resonant frequency 0
kf . Accordingly the starting and 

ending points of each partition (i.e., u
kf  and l

kf

(k = 1, 2, 3,. . . , mn ) are fixed as (1 ± 5%) 0
kf .

     j i j mf f f f j1| |      1,2,  ....n    … (26)

The band-pass filter is employed to generate a 
narrowband signal from each of the IMFs derived 
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from the original signal. The frequency components 
contained in these narrowband signals generated 
using the above-outlined procedure correlated 
strongly with the original signal. Hence true IMFs can 
be identified based on correlation strength. To retain 
the low amplitude true IMFs, both the signal as well 
as the narrowband signals are normalized before 
evaluating the correlation coefficients of the 
narrowband signals. The threshold   defined as,
 i IMFnmax( )/     (i=1........ )   , where   > 1.0 is an 

empirical factor. In the present work  is taken as 
10.0. 

While all the pseudo-IMFs identified using the 
criteria i       are added to the residue, the rest of 
the IMFs are retained. Therefore, the proposed 
intermittency based modal decomposition technique 
meets the prime requirement of extracting all IMFs of 
the resonant modes and eliminating the rest of the 
pseudo decomposed signals. To alleviate the problem 
associated with the end effects during the sifting 
process of EMD, a time series based signal extension 
method is proposed. A wide variety of methods 
proposed in the literature to address this problem can 
be broadly classified as signal extension and extrema 
extension techniques.27 However, these techniques 
will not work for non-stationary signals and are 
suitable only for periodic or quasi-periodic signals. 
Because of this, an AR model-based signal extension 
technique is employed in this paper, which can 
effectively cater to non-stationary and transient 
signals. The details are as follows: 

Let [ ( ), ( ),...., ( )],1 2 nY y t y t y t a time series of size n 
and [ ( ),...., ( )],1 

eext n n nY y t y t the extrapolated signal 

of size en  can be computed as follows: 

Set   sY Y  to shift the mean of the signal, ,Y to 

zero, where   is an average of the last p points 

. ., [ ( ), ( ),...., ( )]1  n p n p ni e mean y t y t y t . Then extended 

points extY are extrapolated by recursively using the 
two preceding points as 

 
( ) . ( ) . ( )

,
s i s i s i

e

y t  y t  y t   

i (n +1),...,n + n
    

 
1 1 2 2  … (27) 

 … (28) 

where, ( ) ( / )
,   

( / ) ( / )
s t t

t t

    
   


   

2

1 2

2 1 2

1 2 1 2
 … (29) 

s  is the pulsation of the sinusoidal extension and 

it is determined as, 

    if 

  otherwise
s

T t
T

t

    


 

4

4

  … (30)

where, T is the difference between the two-time 
instants of the last two extrema in the time series, t  

is the time step length i.e. t t2 1- .   is the damping 

coefficient. It should be mentioned here that s  is 

calculated based on the suggestion of Coughlin et al.28 
To avoid the autoregressive time series model from 
diverging to infinity, the value of T should always be 
greater than 4Δt . Hence in Eq. (31), we need to set T 
as 4Δt , if the value of T is less than 4Δt the auto-
regressive model will automatically adjust the phase 
and amplitude of the sinusoidal extension. This model 
is capable of flattening the envelopes in the IMFs 
generated for low frequencies. 

Construction of Mode Shapes 
The mode shape of the structure associated with 

each identified frequency can be constructed by 
employing EMD and Hilbert transform on the 
measured vibration responses at several appropriately 
chosen spatial locations. The measured time history 

response ( )mz t  can be decomposed into IMFs using 

the earlier outlined EMD procedure (i.e., each IMF 
corresponds to a response of each structural mode), 

( )j
pz t  for j = 1, 2, 3, … n. We use Hilbert transform 

on each modal response ( )j
pz t  to evaluate the 

instantaneous parameters like phase ( ) j
p t  and 

amplitude, ( )j
pA t . Once these instantaneous values of 

each modal response are obtained, we can generate 
mode shapes using the following procedure. 

The absolute values     ( , 1,2,.... )  j j
rs qsand r q n  of 

the jth mode can be written as 

0 0exp ( ) ( )


   
 

j
rs j j

rs qsj
qs

A t A t  … (31) 

Similarly, the phase angle difference between 
      ( , 1,2,3,.... )j j

rs qsand r q n  
of the jth mode is 

0 0( ) ( )   ( ) ( )      j j j j
rs qs rs qst t  … (32) 

( ( ), ( )...., ( ))

( ( ), ( )...., ( ))
e

e

ext n n n n

s n s n s n n

Y y t y t y t

y t y t y t y

  

  



 
1 2
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We can use the least square straight line of the time 

history plots of ln ( )j
rsA T  and ln ( )j

qsA T to arrive at 

the values of 0 0( ) ( )    j j
rs qsA t and A t  at time t=t0. 

Similarly, we can make use of the magnitudes of the 
least square straight lines of the phase angle 

   ( )    ( )j j
rs qst and t  at time t=t0 to arrive at the values 

of  0 0  ( )    ( )j j
rs qst and t respectively. We can take t0 as a 

mid-point in the range of time in which the data 

  (T)    (T) j j
rs qsand  are available. Using this procedure 

(Eqs (31) and (32)) the absolute values and phase 
angle of all the modal elements relative to an arbitrary 
element can be evaluated. Using these relationships 
given in Eqs (31) and (32), the modal coordinates for 
each associated frequency can be obtained. 
 

Results and Discussion 
The investigations carried out on the proposed 

algorithm are organised into two phases. The first 
phase is a numericalsimulation carried outto evaluate 
the proposed EMD process with intermittency along 
with the technique to handle end effects during 
sifting. For this purpose, a six-storey framed structure 
with closely spaced modes is deliberately chosen.  
The frame is modelled as a shear building with 
stiffness of each storey as K1 = 2.0e07 N/m; K 2 = 
4.0e07 N/m; K3 = 6.0E07 N/m; K4 = 8.0E07 N/m; 
K5 = 1.0E08 N/m; K6 = 1.20E08 N/m. The mass of 
each storey is 2000 Kg with the additional mass of 
48000 Kg in the 3rd and 5th storey respectively.  
The natural frequencies of the system are 2.329 Hz; 
5.840 Hz; 16.252 Hz; 35.408 Hz and 36.105 Hz. It 
can be observed that the fourth and fifth frequencies 
are very close and similarly the first two frequencies 
are reasonably close.  

The sampling frequency is considered as 2000 Hz. 
The time history response of the acceleration at the 
top floor for 2000 time steps and the corresponding 
FFT spectra are shown in Fig. 1. As discussed earlier, 
we have used the AR model for handling the end 
effects in empirical mode decomposition. The 
extended signal using the formulations presented in 
the earlier sections to minimize the end effects 
associated with empirical mode decomposition. the 
extended portion of the signal is also shown in Fig. 
1(a). The intrinsic mode functions (IMF) using the 
conventional and the proposed EMD procedures are 
shown in Fig. 2 along with their corresponding FFT 
spectra for the first two IMFS belonging to the closely 

spaced frequencies. Even though more IMFs are 
generated using EMD, we have presented only the 
first two IMFs for comparison purposes. It can be 
easily verified from the FFT spectra of each IMF 
given in Fig. 2(a), that mode mixing is clearly  
present. Alternatively, the EMD with the proposed 
intermittency criteria is presented in Fig. 2(b) along 
with the corresponding FFT spectra. It can be verified 
from the FFT plots given in Fig. 2(b) that they are 
comparing very well with the corresponding 
frequency component of the original signal given in 
Fig. 1(b). It can be concluded from these 
investigations that the proposed EMD with 
intermittency criteria is effective in generating IMFs 
without mode mixing and can separate the closely 
spaced modes. The second phase is considered to test 
and verify the accuracy as well as practical 
amenability of the proposed technique. For this 
purpose, a practical example of a GNTVT tower with 
the measured time history responses is presented.29 

The Guangzhou New TV Tower (GNTVT), of 
China, is shown in Fig. 3.(29–31) The total height of the 
tower is 600 m. While the main tower is 454 m high, 
the height of the antenna mast mounted over the tower 
is 156 m. The main tower is a tube-in-tube structure. 
The outer structure has a hyperboloid plan form and is 

 
 
Fig. 1 — Time history response with extensions using AR and of 
six-storey framed structure and FFT spectra  
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built with twenty-four steel tube columns with 
concrete fill, interconnected by transverse steel 
bracings and also steel beams. The ground level  
cross-sectional dimensions of the outer tower are  
50 × 80 m. While waist level dimensions are  
20.65 × 27.5 m, the top level has 41 × 55 m.  
The inner structure is elliptical in shape, with cross-
sectional dimensions of 14 × 17 m. The inner 
structure is built with reinforced concrete with 
unifo0rm cross-sectional dimensions all through the 
height. The 1800 Tons heavy steel antenna mast 

(octagonal-shaped steel lattice structure) is mounted 
on the top of the tower.  

The 3D finite element model of GNTVT, with 
5 05 164 Degrees of freedom (DF) based on detailed 
available drawings is developed in ANSYS 
commercial finite element software and it is found to 
be too large. Because of this, a reduced-order model is 
developed and reported in the literature.29 The 
reduced-order model is calibrated with the 
experimental results. The reduced FEM model is 
idealized as a cantilever with 37 beam elements and 

 
 

Fig. 2 — Performance of the proposed EMD with intermittency : (a) First two IMFs using conventional EMD and their FFT spectra; (b) 
First two IMFs generated using the proposed EMD and their FFT spectra 
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38 nodes.29 Since the axial DF is constrained at each 
node, the active DF at each node works out to five  
(2 translational and 3 rotational). The complete details 
related to the reduced-order model, global system 
matrices of the reduced FEM model are given in the 
benchmark webpage.31 

More than 700 sensors are reported to be installed 
in the GNTVT tower and is being considered 
currently as an SHM benchmark problem for high-rise 
slender structures.29,30 To acquire acceleration time 
history data of the tower subjected to ambient wind 
excitations or earthquake excitations, twenty uni-axial  
accelerometers are installed on the tower. The 
acceleration time history data is reported to be 
collected at a sampling rate of 50 Hz. As shown in 
Fig. 3, accelerometers are installed at eight different 
levels. While two accelerometers are installed at each 
level to measure acceleration time history data in two 
orthogonal directions, four accelerometers are 
installed (i.e., two for the long axis and two for the 
short axis) at the fourth and eighth levels, The 
measured vibration data from the ambient wind 
excitations of the GNTVT are made publicly 
available31 and is used in the present work for modal 
parameter estimation using the proposed HHT based 
algorithm. Detrending and resampling of the time 
history data are carried out as discussed in  
Lakshmi et al.10 before carrying out the modal 

identification process using the proposed algorithm. A 
typical time history response and also correlated 
response is shown in Fig. 4. 

 
 

Fig. 3 — The GNTV tower in Guangzhou, China and its data acquisition system26 

 

 
 

Fig. 4 — Typical time history and cross-correlated responses of 
GNTVT : (a) Acceleration time history ; (b) Free response 
through cross-correlation 
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EMD with intermittency criteria discussed in one 
of above section is employed to decompose the 
impulse responses to arrive at intrinsic mode 
functions (IMFs). Performing HT on each IMF, the 
instantaneous parameters like amplitude and phase as 
a function of time are evaluated. Plots related to 

‘phase angle  j
rs  Vs time’ and ‘ ln ( )j

rsA T Vs time’ for 

a typical IMF (modal response) is shown in Fig. 5. As 
expected, the instantaneous phase and log of 
instantaneous amplitude oscillate around the straight 
lines. As discussed in section 2.2, the least-square fit 
of the two curves are generated and are shown as 
straight lines in Fig. 5. The slope of the least square fit 

line in the ‘phase angle  j
rs  Vs time’ plot given in Fig. 

5 (a) is the damped natural frequency j
d  associated 

with a typical jth IMF. Similarly, the slope of the least 
square fit line of the ‘ ln ( )j

rsA T Vs time’ plot of a 

typical jth IMF given in Fig. 5(b), is the decaying 

amplitude j
j n  . The natural frequency and damping 

ratios can be obtained from Eqs (24) and (25), using 

the parameters j
d  and j

j n  evaluated for each 

IMF (modal response) as detailed in section 2.1. The 
mode shapes associated with each frequency are 
constructed using the vibration data from all the 
spatially located sensors as described in above section. 
Since 90 data sets are considered for modal 
identification, average values of natural frequencies 
and damping ratios are shown along with the 
theoretical FEM results in Table 1. The mode shapes 
for the tower constructed using the proposed algorithm 
is shown in Fig. 6 along with theoretical (FEM) results. 
A close agreement can be observed between the 
estimated and the theoretical mode shapes. 
 

Table 1 — Modal identification of GNTVT using HTT based 
algorithm 

S. NO FEM Proposed HHT based algorithm 

Frequency (Hz) Frequency (Hz) Damping Ratio 
1 0.1104 0.0944 1.0263 
2 0.1587 0.1395 0.9691 
3 0.3463 0.3620 1.2082 
4 0.3688 0.4192 0.3402 
5 0.3994 0.4728 0.2305 
6 0.4605 0.5044 0.3898 
7 0.4850 0.5219 0.3529 
8 0.7380 0.7862 0.3628 
9 0.9026 0.9597 0.3208 
10 0.9972 1.0435 0.3104 

 

 
 
Fig. 6 — Evaluated modes of the GNTVT using the HHT based 
algorithm: (a) In X-Direction; (b) In Y-Direction 
 

 
 

Fig. 5 — Instantaneous amplitude and phase plots of a typical
IMF for modal parameter extraction of GNTVT tower : (a)
Instantaneous Phase Vs Time plot ; (b) log of Instantaneous
amplitude Vs time plot Evaluated using HHT FEM 
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Conclusions 
An improved version of HHT based algorithm for 
modal identification of practical engineering 
structures is proposed in this paper. EMD with 
intermittency criteria, which handles mode mixing 
due to closely spaced modes, is used on the free 
responses obtained using cross-correlation of 
measured vibration responses. Each IMF obtained 
using EMD can be construed as the modal response of 
the corresponding mode. The frequencies and 
damping ratios are obtained by applying the Hilbert 
transform on each modal response. The mode shapes 
are obtained by similarly processing the data from all 
spatially located sensors. An efficient technique to 
handle the end effects during sifting is also suggested.  

Investigations carried out using a numerical framed 
structure and the publicly available measured 
acceleration time history data of ambient wind excited 
GNTVT, indicate that the proposed HHT-based 
technique can handle closely spaced modes and is 
highly amenable to employ for large structures. 
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