
Journal of Scientific & Industrial Research
Vol. 80, July 2021, pp. 582-592

Multi-Objective ANT Lion Optimization Algorithm Based Mutant Test Case
Selection for Regression Testing

Aprna Tripathi1, Shilpa Srivastava2, Himani Mittal3, Shivaji Sinha4 and Vikash Yadav5,*

1VIT Bhopal University, Madhya Pradesh, India
2Christ University, India

3Raj Kumar Goel Institute of Technology, Ghaziabad, Uttar Pradesh, India
4JSS Academy of Technical Education, Noida, Uttar Pradesh, India

5ABES Engineering College, Ghaziabad, Uttar Pradesh, India

Received 05 February 2021; revised 02 March 2021; accepted 15 March 2021

The regression testing is principally carried out on modified parts of the programs. The quality of programs is the only
concern of regression testing in the case of produced software. Main challenges to select mutant test cases are related to the
affected classes. In software regression testing, the identification of optimal mutant test case is another challenge. In this
research work, an evolutionary approach multi objective ant-lion optimization (MOALO) is proposed to identify optimal
mutant test cases. The selection of mutant test cases is processed as multi objective enhancement problem and these will
solve through MOALO algorithm. Optimal identification of mutant test cases is carried out by using the above algorithm
which also enhances the regression testing efficiency. The proposed MOALO methods are implemented and tested using the
Mat Lab software platform. On considering the populace size of 100, at that point the fitness estimation of the proposed
framework, NSGA, MPSO, and GA are 3, 2.4, 1, and 0.3 respectively. The benefits and efficiencies of proposed methods
are compared with random testing and existing works utilizing NSGA-II, MPSO, genetic algorithms in considerations of test
effort, mutation score, fitness value, and time of execution. It is found that the execution times of MOALO, NSGA, MPSO,
and GA are 2.8, 5, 6.5, and 7.8 respectively. Finally, it is observed that MOALO has higher fitness estimation with least
execution time which indicates that MOALO methods provide better results in regression testing.

Keywords: Genetic algorithm, Matlab, Mutant test case, Regression testing, Software testing

Introduction
Quality confirmation of software products are

essential action carried out with the help of software
testing process. The testing is the best approach to
guarantee useful and robust products or service.
Regardless of a wide scope of accessible devices, it is
yet an action requiring a great deal of human work.
The software quality will probably progress towards
software marketing. As this situation evolves, testing
strategies will become dynamically more imperative.
Software testing is a crucial stage in programming
generation and programming life cycle in light of the
fact that the testing cost is for the most part
represented 50% of the absolute improvement costs.
Experiment case production includes a huge part of
work since it influences the productivity of software
testing procedure and after that the product is
delivered to the client. If the software is complicated,

then the software testing become more challenging.
Fundamental part of maintenance in software by using
regression testing undergoes periodic revision and
enhancement.1–3 This testing is mainly done to ensure
high-quality software products.

Modified codes are tested in regression testing for
gaining confidence in modified software.4 The
regression testing contains testing of programming
items for recently included usefulness and
furthermore guarantees that the progressions don't
influence the functionality of the past code. The test
methodologies are examined to enhance the centrality
of the gathered test suite in testing. These are
arranged into three spaces; minimization, choice, and
prioritization.

5,6
 The regression testing ensures

software quality, but it is also expensive, accounting
for a significant proportion of software production
cost. The testing based on database requirements are
highly expensive and challenging.

Production data with autonomous testing is
improper and combinational test suites probably not

——————
*Author for Correspondence
E-mail: vikas.yadav.cs@gmail.com

TRIPATHI et al.: MULTI-OBJECTIVE ANT LION OPTIMIZATION ALGORITHM BASED

583

illustrative of system tasks. The test case prioritization
improves the faults detection rates.7–9 To provide
regression test approach adaptable for enormous
complex database applications, grouping tree models
are utilized to organize experiments. The experiment
prioritization can be connected to decrease test
execution expenses and examination exertion. The
existing apparatuses and enormous pieces of the
examination in the zone of test mechanization centre
on answers for frameworks are intended to be
profoundly testable.10 Executing a test suite and
checking its belongings with the objective of
foreseeing the perception of mistakes are done more
than once. Regression testing is increasingly
expensive and keeps on accepting enormous
consideration from analysts and professionals. With
regards to configurable frameworks, regression
testing turns out to be much increasingly expensive as
each test should be executed against a few distinct
setups.11,12

A robust strategy is mutation testing for assessing
the deficiency location capacity of test suites. In these
testing, an enormous number of freaks may be
designed and ought to be executed against the test
suite under assessment to check what number of
freaks the test suite can perceive, likewise as such a
freak that the current test suite fails to perceive.
Transformation utilizes basic syntactic changes to the
program under test, making a wide range of
adaptations of the first program, named mutants.
These are delivered utilizing a lot of syntactic
principles called mutants and operators. The
procedure expects professionals to configure
experiments that can recognize the mutants' conduct
from that of the first program. Fundamentally, these
experiments should drive the first programme and its
mutants to result in various yields.13–15

Wellness is short of 1 if the mutant has not been
executed, equivalent to 1 if the mutant is executed and
yet has no effect, and more prominent than 1 if there
is effects or any noticeable contrast. In our situation
this isn't so natural: It probably won't be adequate to
stop once a mutant has brought about a perceptible
contrast as additionally streamlining concerning the
experiment length and the effect. The activity of
creating experiments for mutants isn't done once a
change is executed. Mutant is possibly recognized
when there is a prophet that can distinguish the
misconduct that recognizes the mutant from the first
program. Therefore, mutation based unit tests need
test prophets with the end goal that are recognized.16

Paradigm of mutation brings source code control to
hold up inside the domain of programming testing. In
the speech of source code investigation and control,
every mutant is made by a source-to-source change of
the first program.17 Testing has changed portions of
the application framework. It is as often as possibly
performed to guarantee the legitimacy of the adjusted
programming. In the greater part of the cases, time
and cost requirement is unmistakable; consequently,
the entire test suite can't be run. Accordingly,
prioritization of the experiments winds up basic. The
needed criteria can be set in such manner like: to
expand the rate of issue identification, to accomplish
greatest code inclusion, etc.18 The mutants are various
forms of a unique program created by embedding
changes to administrator. The viability of test suites
for shortcoming confinement is evaluated on seeded
deficiencies those went into a program by making a
gathering of mutants (for example broken forms of
the first program). Mutant depicts syntactic changes
to the programming language. At that point the tests
are utilized to execute these mutants, while the
objective is to gauge how well a test suite can
discover shortcomings.19

ReMT perceives freak test coordinates whose
execution results (i.e., whether or not the test butchered
the freak or not) on the current programming variation
can be reused from the past version without re-executing
the test on the monstrosity. ReMT expands on the
thoughts from relapse test choice procedures that cross
control stream diagrams of two program adaptations to
distinguish the arrangement of hazardous edges which
may prompt diverse test practices in the new program
rendition. All the more definitely, ReMT reuses a mutant
test outcome if (1) execution of the test does not cover a
perilous edge before it achieves the changed explanation
out of the blue, and (2) the execution of the test
can't achieve a dangerous side subsequent to executing
the transformed proclamation. ReMT decides (1)
with dynamic inclusion and characterizes (2)
with a novel static examination for risky edge
reachability dependent on Context-Free-Language
(CFL) reachability.20

Research Questions (RQ)

While planning this research, a set of research
questions were arising which are listed as follows.
The answers of these questions will be provided in
subsequent sections.

RQ 1. What are the problems of existing software
testing approaches?

J SCI IND RES VOL 80 JULY 2021

584

RQ 2. Which software testing algorithm is better to
build quality products?

RQ 3. Which method is proposed for mutant test
case selection?

RQ 4. Why researchers are using to new
optimization algorithms?

RQ 5. What is the future perspective existing in
mutation based regression testing?

Related Works
Kamal & Ranga (2015) portrayed a strategy which

is an assessment and plan of experiment prioritization
method.21 It was used for relapse testing. Further
assessment of cost-mindful experiment prioritization
methods was given by this article. The capacity of the
strategies was investigated to make the relapse testing
measure more productive. The pace of the flaw
discovery was improved by researching the capacity;
else, it was accomplished by an irregular experiment
requesting. Openness cost-aware extra inclusion
prioritization methods upgraded the test suite's pace of
flaw, yet it will not give this improvement. At the
point when the blunders in a product framework were
hard to distinguish, the capacities of cost-discerning
strategies in conveying an improved pace of mistake
ID was investigated. Study of RTS method was
designed by Legunsen et al.22 The technique was said
to be safe in the event that it chooses to execute
complete test suite which might be influenced by code
changes and furthermore the exhibition advantages of
static RTS strategies and their security were
evaluated. One class-level and one technique level
were the two static methods implemented, and also
several variants of these techniques were compared.
The static RTS techniques were compared with
Ekstazi, a best in class, class-level, dynamic RTS
system. Class-level static RTS system was compared
to Ekstazi, with comparative execution benefits,
however at the danger of being hazardous now and
then shown by the experimental results. Android app
testing methods using operators of mutation was
presented by Deng et al.23 The broad utilization of
XML records to determine design and behaviour, the
intrinsic occasion driven nature, and the novel
Activity lifecycle structure were the mutation
operators utilized for the characteristics of Android
apps. The mutation operators were evaluated by using
the observational examination. On genuine world
applications, through empirical research, the
effectiveness of Android mutation testing was
evaluated. The comprehensive examination for

Android apps was provided by the novel Android
mutation operators, shown by the results. Mutation
testing was a preliminary stage; it was applied to the
Android apps hence identified the challenges,
possibilities, and future research directions. The
population-based algorithm consists of the common
characteristics to find out the global solution.
Satapathy et al. proposed a new population
evolutionary optimization technique algorithm social
group optimization (SGO) based on population.24 To
give the promising solutions to multi objective
optimization problems Naik et al. proposes a posterior
multi-objective optimization algorithm named non-
dominated sorting social group optimization
(NSSGO) for multi-objective optimization25.

Optimization Technique:

Shankar and Selvi described a technique for
regression testing with open source instrument.26
Methodology for optimizing regression testing was
described in this paper and frames a noteworthy piece
of programming upkeep. In this methodology, a
genetic algorithm was added for industry-based
projects, and this algorithm reconfigured the
regression testing suites for each cycle. The utilization
of ANN to correct seriousness without manual
intercession upgrades the genetic calculation. The
comparison was made with IBM'S RFT, an exclusive
instrument for automatic testing. Neha et al. proposes
a code and mutant coverage based multi-objective
approach to generate a minimized test suite having the
ability of both detecting and locating faults.27 NSGA-
II algorithm has been used to optimize the test cases.
Maryam (2021) proposes a model-based regression
test called genetic-based web regression testing
(GbWRT) to optimize the solution, by using the
genetic algorithms (GAs). He designed a meta-
ontology based on an in-deep assessment.28

Shaukat et al.29 presented a strategy that evaluates
an exact assessment. Evaluating the impact of 9 mixes
of 3 hybrids and three operators of mutation in the
exhibition of NSGA-II was displayed in this paper.
NSGA-II empowered by the blend alpha crossover
operator (BLX-α) with the polynomial operator is
shown by the experimental evolution results. The best
execution for vulnerability insightful experiment
minimization issues was achieved by NSGA-II. BLX-
α with other assessed transformation operators
additionally provided great execution recommending
that regardless of a change operator, BLX-α
could help NSGA-II accomplish the best execution

TRIPATHI et al.: MULTI-OBJECTIVE ANT LION OPTIMIZATION ALGORITHM BASED 585

for our vulnerability shrewd experiment minimization
issues.

Motivation and Objective
Testing of programming has been recognized as

one standard approach to manage programming
quality certification. Its central point is to recognize
however many errors as could be allowed inside
restricted time and resources. Fundamental steps of
programming testing contain analyse case readiness
and assurance, execution of programming under test
with various cases, and test outcome affirmation.
Significant methodologies like relapse testing, which
re-runs the current examinations to check whether as
of late fixed defects have re-created and guarantee the
progressions of the item will not horribly change the
acts of the unaltered parts. The main point of
contention of relapse testing is to pick a little course
of action of test suites that can be used to viably and
capably check the movements made to the past
variations.

Noteworthy limitation influencing the prevalence
of mutation examination is becoming more expensive,
normally brought by the incredibly huge mutants.
Investigation of mutation neglected to be generally
embraced in the practical situations predominantly
because of its surprising expense, despite the fact that
it is frequently viewed as the most dominant test
paradigm as far as estimating test suits ampleness.
The majority of regression testing techniques are
based on prioritization which generally founded on
inclusion of code. Principle objective of this
exploration work is to distinguish optimal mutant test
case selection for the powerful implementation of
regression testing. These will accommodate for
making quality software products.

Mutant Test Case Selection Using MOALO
An important element of software testing is the

design of predominant quality test data, with a
specific end goal to find deficiencies and mistakes all
through various periods of software development.
Regression testing is performer to unfold the errors (if
occurred) after incorporating the changes in an
existing code. In this stage, it is a huge test to choose
the previous structured mutant test experiment
identified with these influenced classes. Along these
lines, finding a novel strategy for ideal mutant test
experiments is the focal issue in testing. Search based
programming testing, experiment choice utilizing soft
computing calculations investigate the best approach

to direct testing effectively. The evolutionary
calculations could manage the search and produce the
quantity of experiment to ensure the greatest level of
testing effectiveness; it can even now be improved
with respect to its restriction in making the ideal
experiment set. In spite of the fact that hybrid
calculation improved the quantity of creations,
improves the time required for testing. Likewise, the
assessment of welling is impacted by the capability of
the estimation. From now on, in this paper, the
assurance of freak test that can be shown as a multi
target advancement issue can be settled by methods
for multi target subterranean insect lion streamlining
(MOALO) computation for picking freak case tests
which improve the relapse testing adequacy. The
standard objective of the investigation is to perceive
and deal with the ideal trials for relapse testing. The
proposed MOALO approach to perform regression
testing is self-assertive testing. These are actualized
and executed in the working stage of Mat Lab, the
characteristics benefits will be analysed and
contrasted with recent techniques regarding effort of
test, fitness value, mutation score, and execution time.
At last, it is relied upon to distinguish better outcomes
on account of proposed MOALO approach than the
previous procedures.

Work flow and architecture of the proposed
methodology is shown in the Fig. 1. The software
programs or products are taken as the input to the
system and the codes are modified. The mutant test
cases are created and selected for the enhancement of
regression testing. Thus the high quality error free
software products can be obtained as output. The
proposed methods can be efficiently utilized in the
software testing process; these will improve the
productivity in software firms.

Formulation of Objective Function
Consider an arrangement of n test cases and are

managed by m test suits. The proposed method has
found out experimental subset that completely covers
the arrangement of test suits, considering the priority
limitations that increase the path coverage and
mutation score. Let J = {1,2,..., n}be the arrangement

Fig. 1 — Proposed System Framework

J SCI IND RES VOL 80 JULY 2021

586

of experiments and M = {1,2,..., m}be the set of test
suits. Let jMS demonstrates the mutation score of

experiment. The score of each experiment is utilized
by a vector < MS 1, MS 2,....., MS n >and rj,m = 1, if the
test case j is appropriate for test suit m and rj,m = 0,
otherwise. Main goal is to create the quality test cases
that can reduce the number of errors. The mutation
score and path coverage should be augmented for
each experiment during the creation of test cases. The
mathematical model is given by,

a) Objective Function Based on the Mutation Score

Score of mutation is characterized as the level of
killed mutants with total number of mutants. The
score is approved in the process of test case
preparation.

 nn FMaxMS ...(1)

 JSizeMin ...(2)

where
nF be the group of test-case name,

nMS be the

score of test-case n .
Which are related to:

1 kk MSMS Where ntok 1 ...(3)

  1, mjr , 0m belongs to M and j belongs to J

...(4)

0jMS , ntoj 1 and belongs to J ...(5)

   
 

_ 100
DMs

Mutation Score MS
TMs EMs

 


...(6)

where,
TMs- Total_Mutant
DMs- Dead_Mutants
EMs-Equivalent_Mutant
And mutants are the transformed program code,

Dead mutants are the mutants which are obliterated
by test case and similar mutants can't be annihilated
by any of the cases.

b) Objective Function based on Path Coverage

 nn FP cov ...(7)

Where Fn be the test case set name and P covn is the
path coverage of test case n.

P covn ≥ 0, n is the test case in test case set ...(8)

   
 

_ 100
NPC

Path Coverage PCov
TNP

  ...(9)

where

NPC-Number of path covered
TNP- Total Number of Path
The path coverage is the percentage of the path that

is covered related to the total number of paths. The
main concern is to increase the path coverage.

Multi-Objective Ant-Lion Optimization Algorithm

Optimization algorithm strictly follows same
search behaviour of the ALO algorithm. This
algorithm deals with the capturing system of ant-lions
and the relation with their preferred prey, ants. In
multi-objective optimization manages discovering
answers for the issues with multiple objectives. The
optimization entirely works based on the principles of
interaction with ant-lions and the ants. There are
mainly two sets of populations that are, a set of
ant-lions and a set of ants. The ants needed to travel
around the search area by utilizing random walk.
Ant-lions have used better positions to obtain more
ants in the near areas. To solve the optimization
problem, the algorithm uses a random trail of ants,
construction of pit, and entrapment in a pit of ant-lion,
sliding ant toward ant-lions, getting prey, re-building
a pit, and elitism. When an ant is in the trap, then the
ant-lion will try to find the victim and also the prey
will attempt to get away. The capable ant-lions
attempt to arrive at the prey by utilizing sands towards
edge of the pit. Resulting to getting the prey, ant-lions
burns-through it and readies the pit for next chasing.

Individual Representation

In MOALO calculation, the test suit
 mM ,...,2,1 and  nJ ,...,2,1 be the test cases.

The main concern is to distinguish the mutant
experiments that are efficient test cases reduced from
a set of test cases in test suits. The mutants are killed
through test cases. The efficiency can be achieved by
utilizing arbitrary walk in ant-lions, Roulette wheel
choice technique will be clarified in this system.

Fitness Function

It assesses the presentation of people. To begin
with, the target capacities are normalized. At that
point the requirements can be consolidated into the
capacity as a constrained factor. For the first objective
function  nn FMaxMS is the mutation score.

   nnn FMaxMSFf 1
 ...(10)

Second objective function  nn FP cov , is the path

coverage.

TRIPATHI et al.: MULTI-OBJECTIVE ANT LION OPTIMIZATION ALGORITHM BASED

587

   nnn FPFf cov2  ...(11)

To get mono objective function, combine the
 nFf 1

 and  nFf 2
.

     nnn FfFfFf 211   ...(12)

where the
1 and

2 are loads of two destinations,
respectively. At the point get fitness value of

individual nF
 is,

     nnn FfFfFfitness 2211   ...(13)

Input for the methods are considered as the set of
mutants as the ants and the test cases are the ant-lions.
The MOALO is utilized to decrease the quantity of
freaks from a bunch of freaks, the best freaks are
chosen. The MOALO enables the capture of ants in
ant-lion pits by modifying arbitrary walk around
ant-lions.

stst
j

st
i cAntlionc  ...(14)

stst
j

st
i dAntliond  ...(15)

where stc is the base of all factors at cycle at tht
iteration, std demonstrates the limit of all factors

emphasis at tht iteration,
st
ic is the minimum of all

variables for thi ant,
st
id is the max (all variables for

thi ant), and st
jAntlion shows the thj ant-lion position

at thst iteration.
Size of the ant-lions trap relies upon the yearning

dimension of antlions. The bigger pits of antlions will
build the odds of chasing. In this calculation, the
places of the antlions and ants are introduced
arbitrarily and compute their wellness work. The new
places of ants are determined utilizing their wellness
capacity and contrast it and the antlions.
The random walk of ants is calculated by,

    0.... _ 2 1nRW st Cum Sum r st   
...(16)

where SumCum _ is total sum, n is most extreme

number of emphasis, st demonstrates the progression
of irregular walk and  str is where st demonstrates

the progression of the arbitrary walk. To keep
arbitrary stroll in the limits of the inquiry space and
keep the ants from overshooting, the irregular strolls
ought to be standardized utilizing the accompanying
condition,

   
 

st
i

ii

st
i

st
ii

st
ist

i c
ab

cdaRW
RW 






...(17)

where
st
ic is the minimum of thi variable at thst

iteration,
st
id shows the maximum of thi  variable at

thst iteration,
ia is the minimum of the random walk

of thi variable, and
ib is the maximum of random

walk in thi variable.
Elitismis an ALO operator in which the ant-lion

evolved throughout enhancement is stored. Elitism is
a noteworthy marvel of the meta-heuristic calculation
which helps with monitoring and notwithstanding
improving the more noteworthy arrangement all
through the whole streamlining procedure. The ants
are not just moving around chosen ant-lion through
roulette wheel technique, they likewise move
haphazardly around world class subterranean insect
lion. The normal of both arbitrary strolls is utilized to
make the new places of the insect. This is given by,

2

st
E

st
ALst

j

RWRW
Ant


 ...(18)

where, st
ALRW and st

ERW are the random walks around

the roulette wheel selected ant-lion and elite at tht

iteration and
st
jAnt denotes the position of thj ant at

thst iteration.
To get the prey and re-build up the pit by acquired

ant's new positions so far are looked at their
compelling characteristics. The wellness of ants is
figured and the positions of ant-lions are supplanted
with its comparing ants if wellness of the overhauled
ants is superior to ant-lions. At whatever point the
best fit ant-lion in the present emphasis is better than
anything the ant-lion acquired as of recently, the
current fittest ant-lion is considered as elite; else, the
previous elite ant-lion become considered as the elite
for the accompanying cycle. The processes are shown
by,

   st
j

st
i

st
i

st
j AntlionfAntfifAntAntlion  ...(19)

EliteAntlionfifAntlionElite st
j

st
j )(

 ...(20)

where st indicates the loop, st
jAntlion depicts the

selected thj position of ant lion at thst iteration, and
st
iAnt indicates the thi ant position at thst iteration.

To improve the appropriation of the arrangements,

J SCI IND RES VOL 80 JULY 2021

588

two strategies are utilized. The ant-lions are chosen
from the output arrangements with the base populated
neighbourhood. The accompanying condition is used
to means the likelihood of choosing an answer from
the archive.

i
i N

c
P  ...(21)

where c is a consistent and must be higher than 1 and

iN is the quantity of arrangements in the region of the
thi arrangement.

Exactly when the chronicle is full, the
arrangements with most significant populated
neighbourhood are erased from the document to store
new arrangements. The accompanying condition is
utilized to mean the probability of deleting the course
of action from the document,

c

N
P i

i  ...(22)

where

c - A constant which must be > 1 and

iN - No. of solutions in the vicinity for thi solution.

Regression Testing using Mutant Test Case

Testing of software products evaluates the quality
and correctness under some test cases. Testing
process is done during the period of development, and
it will be done after the completion of the product.
Here, the Regression testing is utilized that is an
active and expensive testing method for achieving the
quality of software and for gaining confidence in the
modified software. Regression testing operations are
mainly carried out in the modified codes to provide
confidence in the parts which are changed. In this
testing, the test suit developed for the original
programs will be utilized in the modified program.
Regression testing involves selecting a subset of test
cases from original test suits and also creates new test
cases if necessary. In the developing phase, regression
testing can be started when identification and solving
of errors happens in the programs. In this testing, the
performance of the software system is improved.

A subset of substantial experiments is selected
using regression test selection from test suits to check
whether the affected and unmodified programs have
worked correctly. By using RTS the testing cost can
be reduced. These are consisting of two major
activities: the first identification of the affected parts,

which involves distinguishing the affected portions of
program after modification; the next is the test case
selection, which includes the choice in the subset of
experiments from test suits. The MOALO algorithm
based mutant selection of test case is utilized. The ant
lion optimization is used to optimise the system and to
manage various cases. MOALO algorithm is utilized
to select the mutant test case. Firstly, a bunch of test
cases has created, then introduce some changes to the
programs called mutants and find tests cause the
mutant programs to fail that is called killing the
mutants. Thus the failure is characterized as a
different output from the first. Mutants are produced
to verify the ability of test suits and the mutant
programs are practically proportional to the first
programs, so killing all the mutants are not possible.
Test suit validation: most well-known utilization of
mutation examination is to assess the test suits. Test
suit containing high mutation score is accepted to
recognize more genuine faults than a test suit that has
lower mutation score. Test suit determination: It is the
process of selecting test suits, in this phase the
suitable test suits are chosen. Minimization of test
suit: mutation based test suits reduction method limits
the test suit. Test suite generation: the test suit
generation method goes for producing a test suits with
a high score of mutation. After the completion of
mutant test case selection using the MOALO
algorithm, the mutant test cases are processed in
regression testing.

Experimental Setup
To estimate the productivity of the proposed

MOALO based solution, the correlation will have
performed between the codes that are widespread
from the previous works. Programs which have been
broadly utilized as automatic software test data are
generated using search based software testing area.
The problems are developed using object oriented
languages such as C++ and Java. It consists of various
statements like if and complicated structures like
nested if. Besides, these programs additionally
comprise of conditions with relational operators (=, ≠,
<, >, <=, >=) compound states of AND, OR and
existing arithmetic operators (+, − ,/, *) which make
these codes reasonable in testing with numerous
existing strategies.

In sample programs, a complicated data structure
with various data types like characters, integers,
string, and float has also been utilized. The
experiment is conducted in the systems having

TRIPATHI et al.: MULTI-OBJECTIVE ANT LION OPTIMIZATION ALGORITHM BASED

589

memory of 4 GB RAM, and processor used is 2.10
GHz Intel® Core™ i3, and Windows operating
system and proposed MOALO algorithm based
automated optimal test data generation is executed in
the MATLAB platform.

Result and Discussion
Implementation and Experimentation Results

In this work, the implementation of proposed
methods is done with the help of suitable programs
and its corresponding data. These programs are
instrumented for the implementation of MOALO
algorithm.

 For the experimental purpose, 10 programs are
taken from the previous research works and are
shown in Table 1. Each program contains the different
line of codes that contains different methods, which
means the number of methods are used in the
programs and the functions of each program is shown
in the table.

The MOALO is utilized for identifying the suitable
mutant experiment cases to proceed the testing in
effective way. The results of using MOALO are the
determination of the mutant experiment cases for
regression testing. The testing time reduced and the
efficiency of the whole system increased while
applying these methods. To examine the effect of the
proposed system, the outcomes are compared with the
NSGA-II, MPSO and conventional genetic algorithm
(GA) and outcomes are generated in a random
manner.

By using the MOALO, the number of the generated
solution in every iteration or even run time, populace
size has a critical impact on account of proficiency.
The proficiency is estimated by the iterations required
to cover the suitable ways of the program while the
viability is determined by the quantity of created ideal

test information which requires covering the possible
ways of the program source code.

Populace size is expanded, it subsequently
upgrades the sufficiency of the calculation, be that as
it may, an expansion in the quantity of the cycles
aggravate the required testing time. On the off chance
the size of the populace is expanded, the degree rate
of the ways improved. Meanwhile, the number of test
information is expanded and this isn't required. At the
point, when the size of the population is diminished,
the number of loops to be proceeded, which implies
additional time requirement, so proficiently directing
the control parameters of MOALO algorithm and
selecting satisfactory size of search space is
mandatory. MOALO estimation has executed
different events with various population sizes and the
outcomes have been taken care of that involve the
quantity of test data which covers the inconvenient
way.

Connection between the test data numbers required
to finish the testing as for the iteration numbers and
population size (in thousands) are shown in Fig. 2.
Considering these figures the proposed system which
uses fewer number of examination data on every
iteration the quantities of test information are
decreased with increasing population size.
Considering the Fig. 2(a), when the iteration expands,
at that point the quantity of test information
diminishes. At the beginning, number of test
information is most extreme in every calculation. The
test data are cleared when MOALO, NSGA, MPSO,
GA accomplishes zero position.

That will happen when the amount of accentuation
comes to at 90, 93, 96, and 99 separately. In Fig. 2(b),
with expanding size of the population the quantity of
test information has diminished that implies, to start
with, the quantity of test information is high and the

Table 1 — Selected Programs and Its Data

ID Name of Program Line of Codes Methods Description of program

P1 Triangle 35 1 It return sorted triangle for 3 inputs
P2 Euclid 12 1 It gives the GCD of 2 integers
P3 Mid 26 1 Return the mid estimation of 3 integer values
P4 Bubble_Sort 16 1 Bubble sort algorithm
P5 Trash And Take Out 26 2 Not referenced
P6 Cal 50 2 Figure the quantity of days between two dates around same year
P7 Bank_Account 34 3 Recreate financial balance store and withdrawal measures
P8 Smoke_Detector 40 1 Distinguish the current level of room smoke by two data sources
P9 Vending Machine 112 4 Disperse a couple of things by embeddings coins, picking things and obtaining changes
P10 Sorting Code 70 4 Approve the UK bank sort code for the format XX-XX-XX, here X represents a

single digit

J SCI IND RES VOL 80 JULY 2021

590

expansion in populace size will decrease the test
information.

Fitness values of different calculations with size of
population are shown in Fig. 3. Contrasting with the
previous methods, the proposed systems have extreme
fitness value. The proposed framework which is very
productive than the current frameworks, when the
populace size expands then the fitness value also
expands. On considering the populace size as 100, at
that point the fitness estimation of the proposed
framework, NSGA, MPSO, and GA are 3, 2.4, 1, and
0.3 respectively.

Mutation score and number of test data
relationships are shown in Fig. 4. At the point when
the quantity of test cases is increased the mutation
score has increased.

Considering the proposed system, its score of
mutation is maximum at 50th iteration. In random
methods, the higher mutation score is at the test case
of 100. The proposed system has a good mutation
score and it is more efficient than the others.

Fig. 3 — Relationships between the fitness values and population
size (in thousands)

Fig. 4 — Relationships between the mutation score and number of
test data

In Table 2 various programs that utilize the mutants
and score of mutation which are determined by
identifying the killed mutants and equivalent mutants
are indicated.

The quantity of test information required for
various mutation are,

Different test cases needed for the mutation scores
are indicated in the Table 3. The five scores plotted
are 20%, 40%, 60%, 80%, and 100%. The
corresponding values for each mutation score are
recorded.

Time required for the execution with respect to the
population of MOALO, NSGA-II, MPSO, and
conventional GA are shown in Fig. 5. Based on the
graph, the proposed system needs minimum execution
time when compared to previous methods. Efficiency
and speed of the programs is influenced by the time of

Fig. 2— (a) Relationship between the numbers of test data and the
number of iteration and (b), Connection between population size
(in thousands) and number of test data

TRIPATHI et al.: MULTI-OBJECTIVE ANT LION OPTIMIZATION ALGORITHM BASED

591

execution. The less time for execution is considered
as good programs. Increments in the measure of
population will increase the time of execution. If the
population size is 500 then the execution times of
MOALO, NSGA, MPSO, and GA are 2.8, 5, 6.5, and
7.8 respectively.

Conclusions
In this experimentation the optimal test process for

regression examination is identified utilizing multi-
objective ant-lion optimization algorithm. This
algorithm is totally suited for the determination of the
mutant test cases. To access the software quality using
regression testing, we can use the mutant test cases.
Assurance of mutant cases is considered as a multi-
target upgrade issue which can be settled through a
developmental technique, for example, MOALO
calculation. The implementation is carried out in Mat
Lab simulation and the performance is analysed. For
populace size of 100, the fitness estimation of the
proposed framework is 3.0 while for NSGA, MPSO,
and GA are 2.4, 1, and 0.3 respectively. It is found
that the execution times of MOALO, NSGA, MPSO,
and GA are 2.8, 5, 6.5, and 7.8 respectively which
indicates that the MOALO methods provides better
results in regression testing. The results indicated that
the proposed MOALO technique provides better and
efficient results than the other methods. In various
cases of population size, the execution time obtained
is low. In future works, the examination can be
extended by evaluating the mutant execution results
of every mutant against each signal test case; examine
new methodologies for applying to the automated
testing and in defense systems.

References
1 Deak A, Stålhane T & Sindre G, Challenges and strategies

for motivating software testing personnel, Inf Softw Technol,
73(1) (2016) 1–15.

2 Kassab M, Franco J F D & Laplante P A, Software
testing: The state of the practice, IEEE Softw, 34(5) (2017)
46–52.

3 Sahin O & Akay B, Comparisons of metaheuristic algorithms
and fitness functions on software test data generation, Appl
Soft Comput, 49(1) (2016) 1202–1214.

4 Strandberg, Erik P, Automated system-level regression
test prioritization in a nutshell, IEEE Softw, 34(4) (2017)
30–37.

5 Arora K P & Bhatia R, A systematic review of agent-based
test case generation for regression testing, Arab J Sci
Eng, 43(2) (2018) 447–470.

6 Khatibsyarbini M, Isa M A, Jawawi D N A & Tumeng R,
Test case prioritization approaches in regression testing:
A systematic literature review, Inf Softw Technol, 1(1) (2017)
74–93.

7 Do H, Recent advances in regression testing techniques,
Adv Comput, 103(1) (2016) 53–77.

8 Rogstad E & Briand L, Cost-effective strategies for the
regression testing of database applications: Case study and
lessons learned, J Syst Softw, 113(1) (2016) 257–274.

9 Harikarthik S K, Palanisamy V & Ramanathan P, Optimal
test suite selection in regression testing with test case

Table 2 — Measure of mutation score
ID Mutants Equivalent

mutants
Killed Mutation Score

(%)
P1 320 43 275 99.27
P2 55 10 45 100.00
P3 110 21 88 98.87
P4 90 9 81 100.00
P5 100 11 89 100.00
P6 300 45 253 99.21
P7 95 10 85 100.00
P8 150 15 134 99.26
P9 450 29 420 99.76

P10 200 33 166 99.40
Sum 1870 226 1636 Avg= 99.57

Table 3 — Different Mutation Scores

ID 20% 40% 60% 80% 100%
P1 9 12 27 36 45
P2 1 3 5 7 10
P3 2 6 8 16 22
P4 1 3 5 7 9
P5 2 4 6 8 11
P6 12 18 26 35 46
P7 2 4 6 8 10
P8 3 7 10 12 16
P9 5 11 18 23 30
P10 7 13 22 28 34

Fig. 5 — Comparison in execution time (sec) of existing systems
for different population size (in thousands)

J SCI IND RES VOL 80 JULY 2021

592

prioritization using modified Ann and Whale optimization
algorithm, Clust, 1(1) (2017) 1–10.

10 Ulewicz S & Vogel-Heuser B, Industrially applicable system
regression test prioritization in production automation,
IEEE Trans Autom Sci Eng, 1(1) (2018) 1–12.

11 Souto S & d’Amorim M, Time-space efficient regression
testing for configurable systems, J Syst Softw, (2017) 1(1)
1–14.

12 Sun C-ai, Xue F & Liu H, A path-aware approach to mutant
reduction in mutation testing, Inf Softw Technol, 81(1) (2017)
65–81.

13 Zhang J, Zhang L, Harman M & Hao D, Predictive mutation
testing, IEEE Trans Softw Eng, 1(1) (2018) 898–918.

14 Kintis M, Papadakis M, Papadopoulos A & Valvis E, How
effective are mutations testing tools? An empirical analysis
of Java mutation testing tools with manual analysis and real
faults, Empir Softw Eng, 1(1) (2017) 1–38.

15 Ghiduk A, Girgis M & Shehata M H, Higher order mutation
testing: A systematic literature review, Comput Sci Rev, 1(1)
(2017) 29–48.

16 Tahat L, Korel B, Koutsogiannakis G & Almasri N,
State-based models in regression test suite prioritization,
Softw, 25(3) (2017) 703–742.

17 Loise T, Devroey X & Perrouin G, Towards security-aware
mutation testing, software testing, verification and validation
workshops (ICSTW), IEEE Int Conf Softw Test, Verif Valid
Work (ICSTW), 1(1) (2017) 97–102.

18 Silva A R, de Souza S R S & de Souza P S Lopes,
A systematic review on search based mutation testing,
Inf Softw Technol, 81(1) (2017) 19–35.

19 Nguyen Vu Q & Madeyski L, Addressing mutation testing
problems by applying multi-objective optimization
algorithms and higher order mutation, J Intell Fuzzy Syst,
32(2) (2017) 1173–1182.

20 Zhang L, Marinov D, Zhang L & Khurshid S, Regression
mutation testing, in Proc 2012 Int Symp Softw Test Anal, 1(1)
(2012) 331–341.

21 Ranga K K & Amita, Analysis and design of test case
prioritization technique for regression testing, Int J Innov,
2(1) (2015) 248–252.

22 Legunsen O, Hariri F, Shi A & Lu Y, An extensive study of
static regression test selection in modern software evolution,
In Proc 2016 24th ACM SIGSOFT Int Symp Foundat Softw
Eng, (2016) 583–594.

23 Deng L, Offutt J, Ammann P & Mirzaei N, Mutation
operators for testing Android apps, Inf Softw Technol, 81(1)
(2017) 154–168.

24 Satapathy S & Naik A, Social group optimization (SGO): a
new population evolutionary optimization technique,
Complex Intell Syst, 2 (2016) 173–203.

25 Naik A, Jena J J & Satapathy S C, Non-dominated sorting
social group optimization algorithm for multi-objective
optimization, J Sci Ind Res, 80(02) (2021) 129–136.

26 Shankari H K & Selvi R T, Methodology for regression
testing with open source tool, Int J Eng Sci Technol, 7(1.1)
(2018) 133–137.

27 Gupta N, Sharma A & Pachariya M K, Multi-objective test
suite optimization for detection and localization of software
faults, J King Saud Univ - Comput, (In press),
https://doi.org/10.1016/j.jksuci.2020.01.009.

28 Maryam N A, Genetic-based web regression testing: an
ontology-based multi-objective evolutionary framework to
auto-regression testing of web applications, Serv Oriented
Comput Appl 15(1) (2021) 55–74.

29 Ali S, Li Y, Yue T & Zhang M (2017), An empirical evaluation
of mutation and crossover operators for multi-objective
uncertainty-wise test minimization, in IEEE/ACM 10th Int
Workshop Search-Based Softw Test (SBST), (2017) 21–27.

