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The Walsh Hadamard Transform is a powerful notion in digital signal processing. This paper explains the construction of 

parallel hardware architecture using the mathematical concept of Kronecker product based approach to Walsh Hadamard 

Transform and its simulation using Verilog. This architecture is simulated here using Field Programmable Gate Array 

(FPGA) technology in Verilog Spartan 3e platform. Furthermore, this paper illustrates the fast algorithm and parallel 

computational result of both one-dimensional and two-dimensional transforms using the Kronecker product.This algorithm 

can be used to implement a systolic array based dedicated hardware for computation of the transform. Our proposed 

hardware design for the Walsh Hadamard Transform will be used in various digital signal processing applications.  

The systematic derivation of parallel architecture design using the concept of Kronecker product and stride permutation 

would depict the real time processing rather than conventional way and reducing time complexity using minimal resources 
is a challenging task. 
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Introduction 

The Walsh Hadamard Transform (WHT) is a 

mathematical construct that finds wide applications in 

the fields of digital signal processing, data 

compression, and encryption.
1
 It also finds application 

in quantum computer information processing and it is 

more often called Hadamard gate in this context. The 

transform is particularly useful in feature extraction 

for pattern recognition and digital image processing 

because of its easy implementation using simple 

arithmetic stages.
2
 Also, the binary nature of the 

Walsh functions and the Hadamard matrix allow easy 

semiconductor-based computer implementation.
3
 

The usage of the Kronecker product allows the de-

implementation of WHT using an algorithm that is 

both recursive and parallel. For a one-dimensional 

input of size 2α, the algorithm completes in α clock 

cycles. Moreover, for a two-dimensional input of size 

(2α × 2α), the same is complete in 2α clock cycles. 

Thus, using this approach can significantly reduce the 

number of clock cycles.
4
 

Kronecker product allows the decomposition of the 

WHT matrix into simpler arithmetic stages 

comprising of homogeneous recursive array block. It 

thus provides a parallel computation of systolic based 

array implementation of WHT for synchronous 

evaluation.
5
 Decomposing the one-dimensional input 

into pairs and applying them to the arithmatic stages 

allows for parallel execution.
6
 The output obtained 

is stride-permuted and applied back to the same 

arithmetic stages, continuing the execution 

recursively. For a two-dimensional input, we design 

an algorithm that works on the column-major 

representation of the input.
7
 This representation is 

one-dimensional, allowing the computation similar to 

the above. As discussed in our previous work
8
, the 

step-by-step development beginning from Granata's 

paper.
4
 from the theoretical approach of expressing 

the DSP algorithm using the Kronecker product gives 

insight into developing the parallel hardware 

architecture. 

Although the previous work had focused on 

modeling the FFT algorithm
3,9

, which threw light onto 

the plethora of algorithms involving recursion that can 

have a similar implementation, the major constraint 

remains the implementation of this derived 

architecture for practical. This had been greatly aided 
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by Field-programmable Gate arrays which have 

experienced pleasant favoritism from researchers with 

laboratory constraints. Our case resolves around a 

simple purpose. We implemented a very well-known 

transform technique from the area of DSP using the 

Kronecker product, and as a result, we were able to 

achieve a parallelism technique for the algorithms. 

This has helped us to propose a new architecture for 

an Application Specific Integrated Circuit (ASIC) 

dedicated to this purpose. Our proposed WHT 

algorithm's computational result is faster than basic 

WHT and implemented parallel too. As a result, our 

proposed architecture is faster than our previous 

work
8 
and reduces the time and space complexity. 

This paper is constructed as follows. The Materials 

and Method section gives a brief description of the 

basic concept of the Kronecker product and its 

properties. We use these properties to develop 

formulae for evaluating WHT of the 1D and 2D 

inputs recursive and parallel in sub-sections 

respectively. Then in next sub-section, we propose 

our systolic array-based WHT architecture based on 

these recursive formulae. In the following sub-

section, the paper also contains algorithms for the 

architecture proposed. And last, the paper contains a 

section dedicated to the mathematical and time 

complexity analysis of the algorithms in Results and 

Discussion section. 

 

Materials and Methods 
 

Basic Kronecker Properties 

Let 𝐴𝑛1,𝑛2, and 𝐵𝑚1,𝑚2 be two arbitrary matrices 

of dimension n1 by n2 and m1 by m2, respectively. 

Let F be a field such as R or C. For any matrices, 

𝐴 =  𝑎𝑖 ,𝑗  ∈ 𝐹𝑚×𝑛  𝑎𝑛𝑑 𝐵 ∈ 𝐹𝑝×𝑞 , their Kronecker 

product
4
 (i.e., the direct product or tensor product) 

denoted by 𝐶 =  𝐴 ⊗ 𝐵, is defined as 

𝐴 ⊗ 𝐵 =  𝑎𝑖 ,𝑗𝐵 of dimension  𝑛1 × 𝑚1 ×  𝑛2 × 𝑚2  

𝐶 =   𝐴𝑛1,𝑛2 ⊗ 𝐵𝑚1,𝑚2               … (1) 

𝑇𝑢𝑠, 𝐴 ⊗ 𝐵 ∈ 𝐹 𝑚𝑝  × 𝑛𝑞   
 

Mathematical Model: 1-D Transform 

The WHT performs an orthogonal, symmetric, 

involution, linear operation on a set 𝑋𝑁  of 𝑁 =  2α  
real numbers. For 1-D WHTs, the set of numbers is 

represented as a vector 𝑋𝑁×1, and the transform
10

 is 

given by: 

𝑌𝑁×1 = 𝑊𝑁 ⋅ 𝑋𝑁×1               … (2) 

𝑊𝑁 , the Hadamard matrix for 𝑁 =  2α , can be 

recursively defined as follows: 

𝑊𝑁 =  

𝑊𝑁

2

𝑊𝑁

2

𝑊𝑁

2

−𝑊𝑁

2

                … (3) 

 

Alternatively, 𝑊2α  can be defined using the 

Kronecker product as follows, 
 

𝑊2α = 𝑊2 ⊗ 𝑊2α−1                … (4) 
 

By solving the recurrence for 𝑊2α  using the 

method of substitution, we can get, 
 

𝑊2α =  𝑊2 ⊗ 𝑊2 ⊗ 𝑊2 …⊗ 𝑊2 ⊗ 𝑊2          … (5) 
 

Now the Product rule implies: 

𝐴𝑁1
⊗ …⊗ 𝐴𝑁𝑡

=   𝐼𝑁𝑘−1
⊗ 𝐴𝑁𝑘

⊗ 𝐼 𝑁

𝑁𝑘

 𝑡
𝑘=1  

                 … (6) 

The above generalized product rule can be 

modified specifically for the WHT as follows: 
 

𝑊2α =   𝐼2𝑖 ⊗ 𝑊2 ⊗ 𝐼2α−𝑖−1 α−1
𝑖=0             … (7) 

 

Further, using the commutation theorem, product 

rule, and the properties of stride permutationmatrices, 

we can obtain: 
 

𝑊2α =  𝑃2α ,2 𝐼2α−1 ⊗ 𝑊2 
α−1
𝑖=0              … (8) 

 

Therefore, putting Eq. (8) in the definition of WHT 

stated in Eq. (2), we get 

𝑌𝑁×1 =  𝑃2α ,2 𝐼2α−1 ⊗ 𝑊2 𝑋𝑁×1
α−1
𝑖=0              … (9) 

The above formulation
8
 gives an efficient 

algorithm for computing the Hadamard matrix where 

 𝐼2α−1 ⊗ 𝑊2 𝑋𝑁×1 is a parallel operation and P2α ,2 is 

a 2α- point stride 2 permutation matrix. 

However, using the recursive Kronecker Product 

property of 𝑊𝑁 , as shown in Eq. (5), allows  

parallel execution of lower-order 2-point WHT 

transform block for generating higher-order WHT 

transformation on input 𝑋𝑁 . 
 

4-point Transform: 

The block diagram of section-wise implementation 

of Fast 4-point WHT is given in Fig. 1. 

A 4 point WHT transform matrix, using the 

Kronecker product rule, is represented by: 

𝑊4 =  

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ;  𝑊2 =  
1 1
1 −1

  

𝑜𝑟, 𝑊4 = 𝑊2 ⊗ 𝑊2 =  
𝑊2 𝑊2

𝑊2 −𝑊2
 ;           … (10) 

 

Let us consider a matrix 𝐴𝑛  of dimension 𝑛 × 𝑛 

such that: 
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Fig. 1 — Block Diagram of Section-wise Implementation of Fast 

4-point WHT 
 

𝑊4 =  
𝑊2 𝐴2𝑊2

𝑊2 −𝐴2𝑊2
 =  

𝐼2 𝐴2

𝐼2 −𝐴2
  

𝑊2 0
0 𝑊2

 ; 

𝑜𝑟, 𝑊4 =  
𝐼2 𝐼2

𝐼2 −𝐼2
  

𝐼2 0
0 𝐴2

  
𝑊2 0
0 𝑊2

 ; 

               … (11) 

 

Thus, on comparing Eq. (10) with equation Eq. 

(11), we get that 𝑊4 can be represented in the 

Kronecker product as: 

𝑊4 =  𝑊2 ⊗ 𝐼2  
𝐼2 0
0 𝐴2

  𝐼2 ⊗ 𝑊2  

𝑤𝑒𝑟𝑒,  
𝐼2 0
0 𝐴2

 = 𝐴4 = 𝐼4 =  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

  

Thus, a 4-point WHT can be represented as:  

𝑊4 =  𝑊2 ⊗ 𝐼2  𝐼4  𝐼2 ⊗ 𝑊2             … (12) 
 

8-point Transform 
Similarly, from Fig. 2, using the recursive nature of 

the Kronecker product, the equation representing an 

8-point WHT transform is: 

𝑊8 =  
𝐼4 𝐼4

𝐼4 −𝐼4
  

𝐼4 0
0 𝐴4

  
𝑊4 0
0 𝑊4

 ; 

𝑊8 =  𝑊2 ⊗ 𝐼4  
𝐼4 0
0 𝐴4

  𝐼2 ⊗ 𝑊4           … (13) 

where,  
𝐼4 0
0 𝐴4

 = 𝐴8 = 𝐼8 

 

Thus, the reduced equation is: 

𝑊8 =  𝑊2 ⊗ 𝐼4  𝐼8  𝐼2 ⊗ 𝑊4             … (14) 

 
The Generalised Equation for 1-D Fast WHT 

From the above examples, we can generalise the 

equation for representing a 1D N-point WHT as: 

𝑊𝑁 =  𝑊2 ⊗ 𝐼𝑁
2
  

𝐼𝑁
2

0

0 𝐴𝑁
2

  𝐼2 ⊗ 𝑊𝑁
2
  

𝑊𝑁 =  𝑊2 ⊗ 𝐼𝑁
2

  𝐴𝑁  𝐼2 ⊗ 𝑊𝑁

2

            … (15) 

𝑤𝑒𝑟𝑒 𝐴𝑁 = 𝑑𝑖𝑎𝑔 1 = 𝐼𝑁 

 
 

Fig. 2 — Block Diagram for Section-wise Implementation of Fast 

8-point WHT 
 

Mathematical Model: 2-D Transformation 

The WHT of a square matrix 𝑋𝑁  of order N is 

given by 
 

𝑌𝑁×1 = 𝑊𝑁 × 𝑋𝑁 × 𝑊𝑁
𝑇             … (16) 

 

Now, we can observe from Eq. (3) and Eq. (8), that 

the transpose of 𝑊𝑁 is the same matrix as 𝑊𝑁
𝑇  

𝑊𝑁 = 𝑊𝑁
𝑇 =  

𝑊𝑁

2

𝑊𝑁

2

𝑊𝑁

2

−𝑊𝑁

2

             … (17) 

 

𝑜𝑟, 𝑊𝑁 = 𝑊𝑁
𝑇 =  𝑃2α ,2 𝐼2α−1 ⊗ 𝑊2 

α−1
𝑖=0  

               … (18) 
If we represent the matrix 𝑋𝑁as a column matrix 

𝑋𝐶of order 22α × 1, we can rewrite Eq. (16) for 

obtaining 2-D WHT as follows. 
 

𝑌𝐶 =  𝑊𝑁 ⊗ 𝑊𝑁
𝑇 × 𝑋𝐶              … (19) 

 

where, 𝑌𝐶  is a column matrix representation for 𝑌𝑁 . 

Now for 𝑁 = 2α , in Eq. (19), we can write: 
 

𝑊𝑁 ⊗ 𝑊𝑁
𝑇 = 𝑊2α ⊗ 𝑊2α = 𝑊

22α = 𝑊𝑁2     … (20) 
 

Therefore, we can present the following 

formulation for the computation of 2-D WHT using 

Eq. (18) and (19). 
 

𝑌𝐶 =  𝑃22α ,2 𝐼22α−1 ⊗ 𝑊2 𝑋𝐶
2α−1

𝑖=0            … (21) 
 

The above formulation gives an efficient algorithm 

for computing the Hadamard matrix where  𝐼22α−1 ⊗
𝑊2𝑋𝐶 is a parallel operationand P2α,2 is a 2α- point 

stride 2 permutation matrix. 
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However, using properties of Kronecker product, 

we know from Eq. (15) that in 1D transform 

𝑊𝑁  𝑜𝑟 𝑊2α can be represented as: 

𝑊𝑁 = 𝑊2α =  𝑊2 ⊗ 𝐼𝑁
2
  𝐴𝑁  𝐼2 ⊗ 𝑊𝑁

2
  

Substituting this in Eq. (20), where N = 2𝛼 , we 

get: 

𝑊𝑁2 =  𝑊2 ⊗ 𝐼𝑁2

2

  𝐴𝑁2  𝐼2 ⊗ 𝑊𝑁2

2

  

                … (22) 
Proposed Architecture 

The Generalised WHT equation has two parts: 

1. The parallel computation of inputs to recursive 

𝑊2 blocks. 

2. The multiplication of outputs generated from 

the 𝑊2 transform block in part 1 generates output. 

We present a hardware architecture where each 

iteration in Eq. (15) is completed in one circuit clock 

cycle. In part (1), addition and subtraction for 

computation of recursive 2-point WHT transform 

blocks are done in a positive half cycle.
11

 In part(2), 

the transformed outputs are multiplied to generate 

output 𝑌𝑁  for N-point 𝑊𝑁  transform in the 

corresponding negative half cycle. 

This hardware implementation requires the 

following devices: N Arithmetic Units (AU) that 

consist of an adder and a subtractor for part (1) 

operation and N/2 Multipliers for part (2) operation. 

The outputs of multipliers, i.e., Q1 to Q7, are again 

loaded into X1 to X7 and fed back to the AUs in the 

next clock cycle for computation of the next iteration 

in Eq. (15). In Fig. 3 flowchart representation of the 

algorithm used for computation of (a) 1-D and (b) 2-D 

Walsh Hadamard Transform is depicted. 
 

Algorithms 

Algorithm for 1D transform 
 

Algorithm 1: Algorithm describing the 

computation of 1D WHT Transform 
 

Input: 𝑋𝑛 : N point (2α) input to 1D Transform 

Output: 𝑌𝑛 : N point output of 1D Transform 
 

1 𝑋𝑛  ←  input of size 𝑛 

2 𝑓𝑜𝑟 𝛼 ← 1 𝑡𝑖𝑚𝑒𝑠 𝑑𝑜 

3 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑖𝑠𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑙𝑜𝑐𝑘 

4 𝑌𝑛
𝑇 ← 𝐴𝑈 𝑋𝑛 ; 

5 𝐹𝑜𝑟 𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡𝑒 𝑐𝑙𝑜𝑐𝑘 

6 𝑋𝑛 ← 𝑋𝑛 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 𝑌𝑛
𝑇 ; 

7 end 
 

Algorithm for 2D transform 

Algorithm 2: Algorithm describing the 

computation of 2D WHT Transform 
 

Input: 𝑋𝑛×𝑛 : N × N point input to 2D Transform 

Output: 

𝑌𝑛×𝑛 : N × N point output to 2D Transform 
 

1 𝑋𝑛×𝑛  ←  input of size 𝑛 × 𝑛 

2 Convert 𝑋𝑛×𝑛 into a column major representation 𝑋𝐶  

3 𝑓𝑜𝑟 2𝛼 ← 1 𝑡𝑖𝑚𝑒𝑠 𝑑𝑜 

4 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑖𝑠𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑙𝑜𝑐𝑘 

5 𝑌𝐶
𝑇 ← 𝐴𝑈 𝑋𝐶 ; 

6 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑜𝑐𝑘 

7 𝑋𝐶 ← 𝑋𝐶 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 𝑌𝐶
𝑇 ; 

8 end 

9 Convert column matrix𝑌𝐶  𝑡𝑜 2𝐷 𝑚𝑎𝑡𝑟𝑖𝑥 𝑌𝑛×𝑛  
 

Results and Discussion 
 

The Generalized Recursive Equation for Calculation of 

Operations in Fast WHT 
𝑆𝑁is the number of additions required for fast 

implementation of N-point WHT.  

𝑆𝑁 =  
𝑁

2
× 2 +  2 × 𝑆𝑁

2

             … (23) 

𝑃𝑁is the number of multiplications required for fast 

implementation of N-point WHT. 

𝑃𝑁 =  
𝑁

2
 +  2 × 𝑃𝑁

2

              … (24) 

The comparison based on number of calculation is 

represented in Table 1.  

 
 

Fig. 3 — Flowchart representation of the algorithm used for 

computation of (a) 1-D and (b) 2-D Walsh Hadamard Transform 
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Table 1 — Number of Calculations 

Comparison of operations of WHT 

N Previous work14 Proposed Saved (%) 

𝑃𝑁 𝑆𝑁 Net 𝑃𝑁 𝑆𝑁 Net Net 

4-point WHT 6 10 16 4 8 12 25 

8-point WHT 18 26 44 12 24 36 18.18 

16-point WHT 42 68 110 38 64 102 7.27 

 

Time Complexity Analysis 
 

The Computational Complexity of Previous Works on WHT 

The Walsh Hadamard Transform can be regarded 

as built out of multidimensional Discrete Fourier 

Transforms (DFTs) of size 2 × 2 × … .× 2. The 

Walsh Hadamard Matrix 𝑊𝑁  is a 𝑁 × 𝑁 matrix 

where 𝑁 = 2𝑚  real numbers.  

The naive implementation of WHT of order 

𝑁 = 2𝑚  would have a computational complexity of 

𝒪 𝑁2 .10
 However, even using the fast Hadamard 

transform algorithm
12,13

, the Hadamard transform can 

be computed in 𝒪 𝑁 log2 𝑁 . 
 

1-D Transform 

The expression for the time complexity can be 

obtained from the algorithm itself. Lines 4 and 6 of 

algorithm 1 get executed in 1 clock cycle, which we 

can take as a unit of time, say t. Therefore, the total 

time for computation: 
 

𝑇 =  1 +  α − 1  𝑡 = α𝑡            … (25) 
 

As α = log2 𝑁, the complexity of algorithm 1 is 

given by 𝒪 log2 𝑁 . 
 

2-D Transform 

Similarly, using the algorithm for 2D transform the 

total time for computation. 
 

𝑇 =  1 +  2α − 1  𝑡 = 2α𝑡 =  2 log2 𝑁 𝑡     … (26) 
 

As the input is a 𝑁 × 𝑁, total input size, 𝑀 = 𝑁 ×
𝑁 = 𝑁2. Therefore, 

𝑇 =  2 log2 𝑁 𝑡 =  2 log2 𝑀
1

2 𝑡 =  log2 𝑀 𝑡 

                 … (27) 
 

Thus, the asymptotic representation for the time 

complexity of algorithm 2, can be given by 

𝒪 log2 𝑀 . 
 

Hardware Implementation 

The proposed architecture has been verified using 

Verilog and tested using the 'Spartan 3e development 

kit'. The following diagrammatic schematic 

architecture shown in Figs 4 and 5 is implemented on 

Verilog to generate the following statistics. The 

 
 

Fig. 4 — Schematic architecture of 4-point WHT 
 

 
 

Fig. 5 — Technology schematic view of WHT implementation 
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complete HDL Synthesis Report Statistics is provided 

in Table 2. The Devise Utilisation Report is shown in 

Table 3. 

The computational results are formulated in Figs 6 

and 7. The corresponding runtime of the proposed 

WHTs are shown in Table 4. 

Conclusions 
The mathematical model developed to design the 

proposed architecture depicts a new dimension  

for Walsh Hadamard Transform. The dimensional 

transformation using the Kronecker product for fast 

implementation can give an alternate substitution in 

image processing. Walsh-Hadamard is a combination 

of two algorithms and it is an efficient method of 

image compression and signal filtering. It is because 

these algorithms work on the matrix basis. Since 

signals and images are a combination of matrices, this 

method finds it easy to handle them efficiently and 

fast. The results obtained from the simulation study 

have been quite promising. The simulation results 

using Verilog clearly confirms on the efficiency of the 

proposed method as compared with conventional 

technique. The next step would be to implement a 

higher-order Walsh Hadamard transform tested 

through the FPGA development kit. 
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Table 2 — HDL Synthesis Report 

Macro Statistics 

Components Number 

4-bit Adder carry out 2 

5-bit Adder carry out 1 

6-bit Adder carry out 14 

Total Adder/Subtractors 17 
 

Table 3 — Device Utilisation Summary 

Logic Utilization Used Available Utilisation 

Number of Slices 45 960 4% 

Number of 4 input LUTs 81 1920 4% 

Number of bonded IOBs 40 66 60% 
 

Table 4 — Time taken for computation of WHT with a different 

sequence length 

Sequence length Proposed 

4-point WHT 14.508ns (12.261ns logic, 2.247ns route, 84.5% 

logic, 15.5% route) 

8-point WHT 14.666ns (11.184ns logic, 3.482ns route, 76.3% 

logic, 23.7% route) 

 

 
 

Fig. 6 — Timing diagram of 4 point WHT hardware 

implementation 

 

 
 

Fig. 7 — Timing diagram of 8 point WHT hardware 

implementation 

 


