
Journal of Scientific & Industrial Research

Vol. 81, July 2022, pp. 748-753

Parallel Hardware Implementation of Walsh Hadamard Transform

Pulak Mazumder
1
*, Soumyadeep Chandra

2
, Sekhar Rana

3
, Mainak Mukhopadhyay

4
 & Mrinal Kanti Naskar

2

1Department of ECE, Regent Education and Research Foundation, Kolkata 700 121, West Bengal, India
2Department of ETCE, Jadavpur University, Kolkata 700 032, West Bengal, India

3Department of Electronics and Communication Engineering, MCKV Institute of Engineering, Howrah 711 104,
West Bengal, India

4Department of ECE, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India

Received 18 February 2021; revised 15 June 2022; accepted 20 June 2022

The Walsh Hadamard Transform is a powerful notion in digital signal processing. This paper explains the construction of

parallel hardware architecture using the mathematical concept of Kronecker product based approach to Walsh Hadamard

Transform and its simulation using Verilog. This architecture is simulated here using Field Programmable Gate Array

(FPGA) technology in Verilog Spartan 3e platform. Furthermore, this paper illustrates the fast algorithm and parallel

computational result of both one-dimensional and two-dimensional transforms using the Kronecker product.This algorithm

can be used to implement a systolic array based dedicated hardware for computation of the transform. Our proposed

hardware design for the Walsh Hadamard Transform will be used in various digital signal processing applications.

The systematic derivation of parallel architecture design using the concept of Kronecker product and stride permutation

would depict the real time processing rather than conventional way and reducing time complexity using minimal resources
is a challenging task.

Keywords: FPGA, Kronecker product, Systolic architecture, Verilog

Introduction

The Walsh Hadamard Transform (WHT) is a

mathematical construct that finds wide applications in

the fields of digital signal processing, data

compression, and encryption.
1
 It also finds application

in quantum computer information processing and it is

more often called Hadamard gate in this context. The

transform is particularly useful in feature extraction

for pattern recognition and digital image processing

because of its easy implementation using simple

arithmetic stages.
2
 Also, the binary nature of the

Walsh functions and the Hadamard matrix allow easy

semiconductor-based computer implementation.
3

The usage of the Kronecker product allows the de-

implementation of WHT using an algorithm that is

both recursive and parallel. For a one-dimensional

input of size 2α, the algorithm completes in α clock

cycles. Moreover, for a two-dimensional input of size

(2α × 2α), the same is complete in 2α clock cycles.

Thus, using this approach can significantly reduce the

number of clock cycles.
4

Kronecker product allows the decomposition of the

WHT matrix into simpler arithmetic stages

comprising of homogeneous recursive array block. It

thus provides a parallel computation of systolic based

array implementation of WHT for synchronous

evaluation.
5
 Decomposing the one-dimensional input

into pairs and applying them to the arithmatic stages

allows for parallel execution.
6
 The output obtained

is stride-permuted and applied back to the same

arithmetic stages, continuing the execution

recursively. For a two-dimensional input, we design

an algorithm that works on the column-major

representation of the input.
7
 This representation is

one-dimensional, allowing the computation similar to

the above. As discussed in our previous work
8
, the

step-by-step development beginning from Granata's

paper.
4
 from the theoretical approach of expressing

the DSP algorithm using the Kronecker product gives

insight into developing the parallel hardware

architecture.

Although the previous work had focused on

modeling the FFT algorithm
3,9

, which threw light onto

the plethora of algorithms involving recursion that can

have a similar implementation, the major constraint

remains the implementation of this derived

architecture for practical. This had been greatly aided

——————

*Authors for Correspondence

E-mail: pulak.mazumder@gmail.com

MAZUMDER et al.: PARALLEL HARDWARE IMPLEMENTATION OF WALSH HADAMARD TRANSFORM

749

by Field-programmable Gate arrays which have

experienced pleasant favoritism from researchers with

laboratory constraints. Our case resolves around a

simple purpose. We implemented a very well-known

transform technique from the area of DSP using the

Kronecker product, and as a result, we were able to

achieve a parallelism technique for the algorithms.

This has helped us to propose a new architecture for

an Application Specific Integrated Circuit (ASIC)

dedicated to this purpose. Our proposed WHT

algorithm's computational result is faster than basic

WHT and implemented parallel too. As a result, our

proposed architecture is faster than our previous

work
8
and reduces the time and space complexity.

This paper is constructed as follows. The Materials

and Method section gives a brief description of the

basic concept of the Kronecker product and its

properties. We use these properties to develop

formulae for evaluating WHT of the 1D and 2D

inputs recursive and parallel in sub-sections

respectively. Then in next sub-section, we propose

our systolic array-based WHT architecture based on

these recursive formulae. In the following sub-

section, the paper also contains algorithms for the

architecture proposed. And last, the paper contains a

section dedicated to the mathematical and time

complexity analysis of the algorithms in Results and

Discussion section.

Materials and Methods

Basic Kronecker Properties

Let 𝐴𝑛1,𝑛2, and 𝐵𝑚1,𝑚2 be two arbitrary matrices

of dimension n1 by n2 and m1 by m2, respectively.

Let F be a field such as R or C. For any matrices,

𝐴 = 𝑎𝑖 ,𝑗 ∈ 𝐹𝑚×𝑛 𝑎𝑛𝑑 𝐵 ∈ 𝐹𝑝×𝑞 , their Kronecker

product
4
 (i.e., the direct product or tensor product)

denoted by 𝐶 = 𝐴 ⊗ 𝐵, is defined as

𝐴 ⊗ 𝐵 = 𝑎𝑖 ,𝑗𝐵 of dimension 𝑛1 × 𝑚1 × 𝑛2 × 𝑚2

𝐶 = 𝐴𝑛1,𝑛2 ⊗ 𝐵𝑚1,𝑚2 … (1)

𝑇𝑢𝑠, 𝐴 ⊗ 𝐵 ∈ 𝐹 𝑚𝑝 × 𝑛𝑞

Mathematical Model: 1-D Transform

The WHT performs an orthogonal, symmetric,

involution, linear operation on a set 𝑋𝑁 of 𝑁 = 2α
real numbers. For 1-D WHTs, the set of numbers is

represented as a vector 𝑋𝑁×1, and the transform
10

 is

given by:

𝑌𝑁×1 = 𝑊𝑁 ⋅ 𝑋𝑁×1 … (2)

𝑊𝑁 , the Hadamard matrix for 𝑁 = 2α , can be

recursively defined as follows:

𝑊𝑁 =

𝑊𝑁

2

𝑊𝑁

2

𝑊𝑁

2

−𝑊𝑁

2

 … (3)

Alternatively, 𝑊2α can be defined using the

Kronecker product as follows,

𝑊2α = 𝑊2 ⊗ 𝑊2α−1 … (4)

By solving the recurrence for 𝑊2α using the

method of substitution, we can get,

𝑊2α = 𝑊2 ⊗ 𝑊2 ⊗ 𝑊2 …⊗ 𝑊2 ⊗ 𝑊2 … (5)

Now the Product rule implies:

𝐴𝑁1
⊗ …⊗ 𝐴𝑁𝑡

= 𝐼𝑁𝑘−1
⊗ 𝐴𝑁𝑘

⊗ 𝐼 𝑁

𝑁𝑘

 𝑡
𝑘=1

 … (6)

The above generalized product rule can be

modified specifically for the WHT as follows:

𝑊2α = 𝐼2𝑖 ⊗ 𝑊2 ⊗ 𝐼2α−𝑖−1 α−1
𝑖=0 … (7)

Further, using the commutation theorem, product

rule, and the properties of stride permutationmatrices,

we can obtain:

𝑊2α = 𝑃2α ,2 𝐼2α−1 ⊗ 𝑊2
α−1
𝑖=0 … (8)

Therefore, putting Eq. (8) in the definition of WHT

stated in Eq. (2), we get

𝑌𝑁×1 = 𝑃2α ,2 𝐼2α−1 ⊗ 𝑊2 𝑋𝑁×1
α−1
𝑖=0 … (9)

The above formulation
8
 gives an efficient

algorithm for computing the Hadamard matrix where

 𝐼2α−1 ⊗ 𝑊2 𝑋𝑁×1 is a parallel operation and P2α ,2 is

a 2α- point stride 2 permutation matrix.

However, using the recursive Kronecker Product

property of 𝑊𝑁 , as shown in Eq. (5), allows

parallel execution of lower-order 2-point WHT

transform block for generating higher-order WHT

transformation on input 𝑋𝑁 .

4-point Transform:

The block diagram of section-wise implementation

of Fast 4-point WHT is given in Fig. 1.

A 4 point WHT transform matrix, using the

Kronecker product rule, is represented by:

𝑊4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ; 𝑊2 =
1 1
1 −1

𝑜𝑟, 𝑊4 = 𝑊2 ⊗ 𝑊2 =
𝑊2 𝑊2

𝑊2 −𝑊2
 ; … (10)

Let us consider a matrix 𝐴𝑛 of dimension 𝑛 × 𝑛

such that:

J SCI IND RES VOL 81 JULY 2022

750

Fig. 1 — Block Diagram of Section-wise Implementation of Fast

4-point WHT

𝑊4 =
𝑊2 𝐴2𝑊2

𝑊2 −𝐴2𝑊2
 =

𝐼2 𝐴2

𝐼2 −𝐴2

𝑊2 0
0 𝑊2

 ;

𝑜𝑟, 𝑊4 =
𝐼2 𝐼2

𝐼2 −𝐼2

𝐼2 0
0 𝐴2

𝑊2 0
0 𝑊2

 ;

 … (11)

Thus, on comparing Eq. (10) with equation Eq.

(11), we get that 𝑊4 can be represented in the

Kronecker product as:

𝑊4 = 𝑊2 ⊗ 𝐼2
𝐼2 0
0 𝐴2

 𝐼2 ⊗ 𝑊2

𝑤𝑒𝑟𝑒,
𝐼2 0
0 𝐴2

 = 𝐴4 = 𝐼4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Thus, a 4-point WHT can be represented as:

𝑊4 = 𝑊2 ⊗ 𝐼2 𝐼4 𝐼2 ⊗ 𝑊2 … (12)

8-point Transform
Similarly, from Fig. 2, using the recursive nature of

the Kronecker product, the equation representing an

8-point WHT transform is:

𝑊8 =
𝐼4 𝐼4

𝐼4 −𝐼4

𝐼4 0
0 𝐴4

𝑊4 0
0 𝑊4

 ;

𝑊8 = 𝑊2 ⊗ 𝐼4
𝐼4 0
0 𝐴4

 𝐼2 ⊗ 𝑊4 … (13)

where,
𝐼4 0
0 𝐴4

 = 𝐴8 = 𝐼8

Thus, the reduced equation is:

𝑊8 = 𝑊2 ⊗ 𝐼4 𝐼8 𝐼2 ⊗ 𝑊4 … (14)

The Generalised Equation for 1-D Fast WHT

From the above examples, we can generalise the

equation for representing a 1D N-point WHT as:

𝑊𝑁 = 𝑊2 ⊗ 𝐼𝑁
2

𝐼𝑁
2

0

0 𝐴𝑁
2

 𝐼2 ⊗ 𝑊𝑁
2

𝑊𝑁 = 𝑊2 ⊗ 𝐼𝑁
2

 𝐴𝑁 𝐼2 ⊗ 𝑊𝑁

2

 … (15)

𝑤𝑒𝑟𝑒 𝐴𝑁 = 𝑑𝑖𝑎𝑔 1 = 𝐼𝑁

Fig. 2 — Block Diagram for Section-wise Implementation of Fast

8-point WHT

Mathematical Model: 2-D Transformation

The WHT of a square matrix 𝑋𝑁 of order N is

given by

𝑌𝑁×1 = 𝑊𝑁 × 𝑋𝑁 × 𝑊𝑁
𝑇 … (16)

Now, we can observe from Eq. (3) and Eq. (8), that

the transpose of 𝑊𝑁 is the same matrix as 𝑊𝑁
𝑇

𝑊𝑁 = 𝑊𝑁
𝑇 =

𝑊𝑁

2

𝑊𝑁

2

𝑊𝑁

2

−𝑊𝑁

2

 … (17)

𝑜𝑟, 𝑊𝑁 = 𝑊𝑁
𝑇 = 𝑃2α ,2 𝐼2α−1 ⊗ 𝑊2

α−1
𝑖=0

 … (18)
If we represent the matrix 𝑋𝑁as a column matrix

𝑋𝐶of order 22α × 1, we can rewrite Eq. (16) for

obtaining 2-D WHT as follows.

𝑌𝐶 = 𝑊𝑁 ⊗ 𝑊𝑁
𝑇 × 𝑋𝐶 … (19)

where, 𝑌𝐶 is a column matrix representation for 𝑌𝑁 .

Now for 𝑁 = 2α , in Eq. (19), we can write:

𝑊𝑁 ⊗ 𝑊𝑁
𝑇 = 𝑊2α ⊗ 𝑊2α = 𝑊

22α = 𝑊𝑁2 … (20)

Therefore, we can present the following

formulation for the computation of 2-D WHT using

Eq. (18) and (19).

𝑌𝐶 = 𝑃22α ,2 𝐼22α−1 ⊗ 𝑊2 𝑋𝐶
2α−1

𝑖=0 … (21)

The above formulation gives an efficient algorithm

for computing the Hadamard matrix where 𝐼22α−1 ⊗
𝑊2𝑋𝐶 is a parallel operationand P2α,2 is a 2α- point

stride 2 permutation matrix.

MAZUMDER et al.: PARALLEL HARDWARE IMPLEMENTATION OF WALSH HADAMARD TRANSFORM

751

However, using properties of Kronecker product,

we know from Eq. (15) that in 1D transform

𝑊𝑁 𝑜𝑟 𝑊2α can be represented as:

𝑊𝑁 = 𝑊2α = 𝑊2 ⊗ 𝐼𝑁
2
 𝐴𝑁 𝐼2 ⊗ 𝑊𝑁

2

Substituting this in Eq. (20), where N = 2𝛼 , we

get:

𝑊𝑁2 = 𝑊2 ⊗ 𝐼𝑁2

2

 𝐴𝑁2 𝐼2 ⊗ 𝑊𝑁2

2

 … (22)
Proposed Architecture

The Generalised WHT equation has two parts:

1. The parallel computation of inputs to recursive

𝑊2 blocks.

2. The multiplication of outputs generated from

the 𝑊2 transform block in part 1 generates output.

We present a hardware architecture where each

iteration in Eq. (15) is completed in one circuit clock

cycle. In part (1), addition and subtraction for

computation of recursive 2-point WHT transform

blocks are done in a positive half cycle.
11

 In part(2),

the transformed outputs are multiplied to generate

output 𝑌𝑁 for N-point 𝑊𝑁 transform in the

corresponding negative half cycle.

This hardware implementation requires the

following devices: N Arithmetic Units (AU) that

consist of an adder and a subtractor for part (1)

operation and N/2 Multipliers for part (2) operation.

The outputs of multipliers, i.e., Q1 to Q7, are again

loaded into X1 to X7 and fed back to the AUs in the

next clock cycle for computation of the next iteration

in Eq. (15). In Fig. 3 flowchart representation of the

algorithm used for computation of (a) 1-D and (b) 2-D

Walsh Hadamard Transform is depicted.

Algorithms

Algorithm for 1D transform

Algorithm 1: Algorithm describing the

computation of 1D WHT Transform

Input: 𝑋𝑛 : N point (2α) input to 1D Transform

Output: 𝑌𝑛 : N point output of 1D Transform

1 𝑋𝑛 ← input of size 𝑛

2 𝑓𝑜𝑟 𝛼 ← 1 𝑡𝑖𝑚𝑒𝑠 𝑑𝑜

3 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑖𝑠𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑙𝑜𝑐𝑘

4 𝑌𝑛
𝑇 ← 𝐴𝑈 𝑋𝑛 ;

5 𝐹𝑜𝑟 𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡𝑒 𝑐𝑙𝑜𝑐𝑘

6 𝑋𝑛 ← 𝑋𝑛 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 𝑌𝑛
𝑇 ;

7 end

Algorithm for 2D transform

Algorithm 2: Algorithm describing the

computation of 2D WHT Transform

Input: 𝑋𝑛×𝑛 : N × N point input to 2D Transform

Output:

𝑌𝑛×𝑛 : N × N point output to 2D Transform

1 𝑋𝑛×𝑛 ← input of size 𝑛 × 𝑛

2 Convert 𝑋𝑛×𝑛 into a column major representation 𝑋𝐶

3 𝑓𝑜𝑟 2𝛼 ← 1 𝑡𝑖𝑚𝑒𝑠 𝑑𝑜

4 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑖𝑠𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐𝑙𝑜𝑐𝑘

5 𝑌𝐶
𝑇 ← 𝐴𝑈 𝑋𝐶 ;

6 𝐹𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑜𝑐𝑘

7 𝑋𝐶 ← 𝑋𝐶 ← 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 𝑌𝐶
𝑇 ;

8 end

9 Convert column matrix𝑌𝐶 𝑡𝑜 2𝐷 𝑚𝑎𝑡𝑟𝑖𝑥 𝑌𝑛×𝑛

Results and Discussion

The Generalized Recursive Equation for Calculation of

Operations in Fast WHT
𝑆𝑁is the number of additions required for fast

implementation of N-point WHT.

𝑆𝑁 =
𝑁

2
× 2 + 2 × 𝑆𝑁

2

 … (23)

𝑃𝑁is the number of multiplications required for fast

implementation of N-point WHT.

𝑃𝑁 =
𝑁

2
 + 2 × 𝑃𝑁

2

 … (24)

The comparison based on number of calculation is

represented in Table 1.

Fig. 3 — Flowchart representation of the algorithm used for

computation of (a) 1-D and (b) 2-D Walsh Hadamard Transform

J SCI IND RES VOL 81 JULY 2022

752

Table 1 — Number of Calculations

Comparison of operations of WHT

N Previous work14 Proposed Saved (%)

𝑃𝑁 𝑆𝑁 Net 𝑃𝑁 𝑆𝑁 Net Net

4-point WHT 6 10 16 4 8 12 25

8-point WHT 18 26 44 12 24 36 18.18

16-point WHT 42 68 110 38 64 102 7.27

Time Complexity Analysis

The Computational Complexity of Previous Works on WHT

The Walsh Hadamard Transform can be regarded

as built out of multidimensional Discrete Fourier

Transforms (DFTs) of size 2 × 2 × … .× 2. The

Walsh Hadamard Matrix 𝑊𝑁 is a 𝑁 × 𝑁 matrix

where 𝑁 = 2𝑚 real numbers.

The naive implementation of WHT of order

𝑁 = 2𝑚 would have a computational complexity of

𝒪 𝑁2 .10
 However, even using the fast Hadamard

transform algorithm
12,13

, the Hadamard transform can

be computed in 𝒪 𝑁 log2 𝑁 .

1-D Transform

The expression for the time complexity can be

obtained from the algorithm itself. Lines 4 and 6 of

algorithm 1 get executed in 1 clock cycle, which we

can take as a unit of time, say t. Therefore, the total

time for computation:

𝑇 = 1 + α − 1 𝑡 = α𝑡 … (25)

As α = log2 𝑁, the complexity of algorithm 1 is

given by 𝒪 log2 𝑁 .

2-D Transform

Similarly, using the algorithm for 2D transform the

total time for computation.

𝑇 = 1 + 2α − 1 𝑡 = 2α𝑡 = 2 log2 𝑁 𝑡 … (26)

As the input is a 𝑁 × 𝑁, total input size, 𝑀 = 𝑁 ×
𝑁 = 𝑁2. Therefore,

𝑇 = 2 log2 𝑁 𝑡 = 2 log2 𝑀
1

2 𝑡 = log2 𝑀 𝑡

 … (27)

Thus, the asymptotic representation for the time

complexity of algorithm 2, can be given by

𝒪 log2 𝑀 .

Hardware Implementation

The proposed architecture has been verified using

Verilog and tested using the 'Spartan 3e development

kit'. The following diagrammatic schematic

architecture shown in Figs 4 and 5 is implemented on

Verilog to generate the following statistics. The

Fig. 4 — Schematic architecture of 4-point WHT

Fig. 5 — Technology schematic view of WHT implementation

MAZUMDER et al.: PARALLEL HARDWARE IMPLEMENTATION OF WALSH HADAMARD TRANSFORM

753

complete HDL Synthesis Report Statistics is provided

in Table 2. The Devise Utilisation Report is shown in

Table 3.

The computational results are formulated in Figs 6

and 7. The corresponding runtime of the proposed

WHTs are shown in Table 4.

Conclusions
The mathematical model developed to design the

proposed architecture depicts a new dimension

for Walsh Hadamard Transform. The dimensional

transformation using the Kronecker product for fast

implementation can give an alternate substitution in

image processing. Walsh-Hadamard is a combination

of two algorithms and it is an efficient method of

image compression and signal filtering. It is because

these algorithms work on the matrix basis. Since

signals and images are a combination of matrices, this

method finds it easy to handle them efficiently and

fast. The results obtained from the simulation study

have been quite promising. The simulation results

using Verilog clearly confirms on the efficiency of the

proposed method as compared with conventional

technique. The next step would be to implement a

higher-order Walsh Hadamard transform tested

through the FPGA development kit.

References
1 Crochiere R E & RabinerL R, Multirate Digital Signal

Processing, Englewood Cliffs (NJ Prentice-Hall) 1983.

2 Wang Z, Harmonic analysis with a real frequency function, I

Aperiodic case, II Periodic and bounded cases and III Data

sequence, Appl Math Comput, 9 (1981) 53–73.

3 Hartley R V L, A more symmetrical Fourier analysis applied

to transmission problems, Proc IRE, 30 (1942) 144–150.

4 Granata J, Conner M & Tolimieri R, Recursive fast

algorithm and the role of the tensor product, IEEE Trans

Signal Process, 40(12) (1992) 2921–2930.

5 Bi G & Chen Y Q, Fast DHT Algorithms for Length N = q ×

2m, IEEE Trans. on Signal Processing, 47(1999) 900–903.

6 Tolimieri R, An M & Lu C, Algorithms for Discrete Fourier

Transform and Convolution (Springer-Verlag) 1989.

7 Johnson J R, Johnson R W, Rodriguez D & Tolimieri R,

A methodology for designing, modifying, and implementing

Fourier transform algorithms on various architectures,

Circuits Syst Signal Pro, 9(4) (1990) 449–500.

8 Mazumder P, Middya R & Naskar M K, Hardware

implementation of fast recursive walsh-hadamard transform,

Int J Comput Sci Eng, 7(1) (2019) 28–32.

9 Milder P A, Franchetti F, Hoe, J C & Püschel M, Discrete

Fourier Transform Compiler: From Mathematical

Representation to Efficient Hardware, CSSI Technical

Report #CSSI-07-01, (Carnegie Mellon University) 2007

10 Chiper D F, Radix-2 fast algorithm for computing discrete

hartley transform of type III, IEEE Trans Circuits Syst II:

Express Br, 59(5) (2012) 297–301.

11 Chiper D F, A Novel VLSI DHT Algorithm for a highly

modular and parallel architecture, IEEE Trans Circuits Syst

II: Express Br, 60(5) (2013) 282–286.

12 BracewellR N, The Fast Hartley Transform, Proc IEEE,

72(8) (1984) 1010–1018.

13 Fino, Bernard J & Ralph AlgaziV, Unified matrix treatment

of the fast Walsh-Hadamard transform, IEEE Trans Comput,

11 (1976) 1142–1146.

Table 2 — HDL Synthesis Report

Macro Statistics

Components Number

4-bit Adder carry out 2

5-bit Adder carry out 1

6-bit Adder carry out 14

Total Adder/Subtractors 17

Table 3 — Device Utilisation Summary

Logic Utilization Used Available Utilisation

Number of Slices 45 960 4%

Number of 4 input LUTs 81 1920 4%

Number of bonded IOBs 40 66 60%

Table 4 — Time taken for computation of WHT with a different

sequence length

Sequence length Proposed

4-point WHT 14.508ns (12.261ns logic, 2.247ns route, 84.5%

logic, 15.5% route)

8-point WHT 14.666ns (11.184ns logic, 3.482ns route, 76.3%

logic, 23.7% route)

Fig. 6 — Timing diagram of 4 point WHT hardware

implementation

Fig. 7 — Timing diagram of 8 point WHT hardware

implementation

