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In this study design optimization for 4-poled 1500 rpm 25 kVA synchronous generator (SG) is performed. The aim is to 
determine the optimum factor levels for the design parameters namely slot opening width (Bs0), height, and width to keep 
the responses namely ‘pole-body flux density’ and ‘air-gap flux density’ distributions in a desired range. The target values 
are determined as 1.75 Tesla and 0.9 Tesla for the ‘pole-body flux density’ and ‘air-gap flux density’ respectively. For this 
purpose, Response Surface Methodology (RSM) is used for optimization. Numerical simulations are performed in the 
Maxwell environment and the optimization by RSM is performed by Minitab statistical package. Desired goals were 
achieved and optimum factor levels were determined with RSM. Then the results of RSM are compared by Genetic 
Algorithm (GA), Particle Swarm Optimization algorithm (PSO), and Modified Social Group Optimization (MSGO) 
algorithm. These methods are evaluated together in terms of advantages and disadvantages. The comparisons indicate that 
using RSM provides acceptable results without performing coding effort and also provides users to understand the relations 
visually between the factors and the responses by the aid of ‘Minitab Response Optimizer Module’.  
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Introduction 
Synchronous Generator (SG) design optimization is 

investigated by many researchers. In these studies, 
Total Harmonic Distortion (THD), efficiency, magnetic 
flux density distribution and etc. are widely selected 
performance criteria those are tried to be improved. 
Magnetic flux density distribution is an important 
performance criterion which must be kept in a 
particular range to provide the high efficiency for the 
electric machine. For the design optimization many 
different methods are used. Because of having so many 
design combinations, it is impossible to perform the 
optimization by using the real experimental results. 
Instead of this, simulation results are widely used. The 
related remarkable studies about the SG design 
optimization are as follows. Gizolme et al. studied on 
the pole shape optimization of SG rotor. They used 
2D Finite Element Analysis (FEA) and Genetic 
Algorithm (GA) together to minimize the flux density 
harmonics.1 Gillon & Brochet have been researching 
the optimization of the design of an electric motor 
using RSM. As design parameters for optimization, 

they used half tooth, yoke thickness, slot height, open 
angular tooth, tooth head thickness, magnet thickness, 
air-gap, open angular magnet, and radius shaft.2 Jolly 
et al. used RSM and GA to optimize Permanent 
Magnet Motor (PMM) design parameters and they 
used FEA for numerical experiments. Torque and 
speed are chosen as the variables that influence the 
responses.3 Fang et al. studied on Interior PM 
Synchronous Motors (IPMSM). Using RSM, the 
optimal configuration of the double-layer IPMSM 
model is effectively calculated. Numerical 
experiments are performed using equivalent circuit 
method and FEA. Design parameters those have to be 
optimized are selected as; lengths of 1st & 2nd PM 
layers, break angles of 1st & 2nd PM segments.4 

Hasanien & Muyeen performed optimization by using 
GA and RSM to optimize the PI parameters of 
Variable Speed Wind Turbine (VSWT) driven 
PMSG’s frequency converter. The responses are 
considered as the settling time, the maximum 
percentages undershoot - overshoot, and steady—state 
error of the voltage profile.5 Zhang et al. suggested a 
method to optimize a transverse flux PMM by using 
the Particle Swarm Optimization (PSO) algorithm and 
RSM together to maximize the no-load Electromotive 
Force (EMF).6 Chai et al. performed rotor design 
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optimization of a PM wound field SG to maximize the 
average output torque and to decrease the torque 
ripple. They used 2D FEA, Kriging method and GA 
together.7 Islam et al. optimized the design parameters 
namely slot wedge and semi-closed stator. They used 
2D FEA and focused on air-gap flux density.8 
Soleimani et al. used RSM for optimizing high power 
Transverse Flux PM (TFPM) generators. The factors 
namely PM thickness, air-gap length, outer rotor 
radius, overlap between rotor length and PM are 
optimized.9 Karaoglan et al. proposed RSM for 
optimizing the design parameters of stator slot of 
PMG.10 They used Bs0, Bs1, Bs2, Hs2 parameters to 
optimize the responses namely: air-gap flux density, 
efficiency, statoryoke flux density and stator teeth 
flux density. 

Optimizing the magnetic flux density distribution is 
investigated in several studies. In this paper, the goal is 
to find the optimum design values for some of the 4-
pole 1500 rpm 25 kVA SG design parameters (slot 
opening width (Bs0), height and width) using RSM. In 
the electric engineering society literature, GA and PSO 
are the widely used optimization algorithms for design 
optimization. Modified Social Group Optimization 
(MSGO) which is the recently presented effective 
optimization algorithm is not previously used in this 
type of electric machine design optimization problem. 
So the findings are also compared to the results of GA, 
PSO, and MSGO optimization results. Optimum values 
for these design parameter combination together are  
not previously investigated for multi-objective 
optimization. Also the performance of RSM is not 
previously compared with GA, PSO, and MSGO for 
this type of problem. These are the novelty aspects of 
this research.  

The motivation is to show the reader by visually 
the effect of these 3 design parameters on the 
magnetic flux by using minimum number of 
experimental runs. This study is performed in a real 
industrial plant and by considering only this limited 
number of parameters, we aimed to less affect the 
serial production line layout and its operations (such 
as the redesign of the assembly parts that may affect 
the standard production, body design, cooling design 
and etc.). Because of this reason the parameters  
(slot opening width (Bs0), height and width) those 
less affect the outer dimensions of the alternator  
is selected as the factors. Next section describes  
the details of the optimization method used in  
this study. 

Materials and Methods 
Since the RSM is first introduced in 1951, it 

became a commonly used Design of Experiment 
(DOE) approach used to model, analyze, and optimize 
processes with a minimum experimental runs.  
We used RSM — the synthesis of statistical and 
mathematical methods — to construct comprehensive 
mathematical models of complex systems that include 
several interaction parameters. RSM's key concept is 
to use a series of planned experiments at the first level 
with minimum runs. In the second step, regression 
modelling is conducted to achieve an optimal 
response by using these experimental findings. Finally 
in the third stage — to estimate the optimal solution- 
gradient search algorithm is used.11–13 The goal of this 
paper is to optimize the slot opening width (Bs0), 
height, and width while keeping the responses namely 
‘pole-body flux density’ and ‘air-gap flux density’ 
distributions in a desired range. In the first stage an 
experimental design is conducted by using orthogonal 
arrays and the responses are measured for each 
experimental run. Second stage of RSM is the 
modeling phase. Mathematical relationship between 
these factors and the responses must be determined. 
This is performed by using regression modeling. 
Regression models can be composed of linear terms, 
quadratic terms, and interaction terms. If a model has 
these three terms together then this model is called 
full quadratic model. The general representation of 
the model is given in Eq. (1).11–13 This model will be 
calculated from the experimental runs obtained from 
the Maxwell simulations (given in the following 
section).  
 

௜ܻ ൌ ଴ߚ ൅ ∑ ௞ߚ
௠
௞	ୀ	ଵ ܺ௞௜ ൅ ∑ ௞௞ߚ

௠
௞	ୀ	ଵ ܺ௞௜

ଶ ൅
∑ ௞௟ߚ
௠
௞	ழ௟ ܺ௞௜ ௟ܺ௜ ൅ ݁௜    …(1) 

 

઺୘ ൌ ሾߚ଴,ߚଵ,ߚଶ, …  ௠ሿ    …(2)ߚ,
 

௜ܻ represents the response value for ith 
experimental run. In this study, there are 2 responses 
which mean that we will calculate 2 different 
regression equations in the next section. ܺ terms are 
the values of the factors (in this study the factors 
are:	 ଵܺ: slot opening width (Bs0), ܺଶ: height, and ܺଷ	: 
width). ܺ௞௜ ௟ܺ௜ terms represents the interaction terms 
in the model (in this study there can be maximum 3 
interaction terms such as ଵܺ	ܺଶ, ଵܺ	ܺଷ, ܺଶ	ܺଷ). ݁௜ is 
the residual error for the ith experimental run.  
઺ vector that is given in Eq. (2) includes the 
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coefficients of the models given in Eq. (1) and 
calculated as given below.11–13 

 

ߚ ൌ ሺ்ܺܺሻିଵሺ்ܻܺሻ    …(3) 
 

Y is called the response and represented by a 
column vector that is composed of the observed 
magnetic flux values from the Maxwell simulations. 
X represents the input matrix and composed of the 
runs performed in the experimental design for 
different combinations of the design parameters. The 
1st column of X matrix is composed of 1s for the 
constant term (ߚ଴ሻ of the model. In a model that 
contains 3 factors; the 2nd, 3rd, and the 4th columns 
includes the factor values of 1X , 2X , and 3X

respectively. In this study 15 runs are designed for the 
experiments. These 3 columns (2nd, 3rd, and the 4th 
columns) and 15 rows are exactly the same as the 
experimental design. The 5th, 6th, and 7th columns of 	
X matrix are composed of the squares of ଵܺ, ܺଶ, and 
ܺଷ respectively. The same issue is valid for the 
interactions. The interactions ( ଵܺ	ܺଶ, ଵܺ	ܺଷ, ܺଶ	ܺଷ) 
are placed in the 8th, 9th, and 10th columns of X matrix 
by multiplying the related columns of ଵܺ, ܺଶ, and ܺଷ. 
In other words in order to have columns containing all 
terms in the model, the X matrix is ordered.11–13 When 
the data given in the following section are examined, 
it will be seen that for the regression model of pole-
body flux density, the X matrix with dimensions of 
15x10 will be obtained for 15 runs and 10 model 
coefficients (β). Similarly, for the regression model of 
air-gap flux density we will need another similar X 
matrix with same dimensions. R2 (coefficient of 
determination) is determined after mathematical 
modeling to decide if the factors that are used in the 
mathematical model are sufficient to explain the 
change in response. In other words, R2 represents the 
explanatory level between the model of regression 
and the factors. 

 

ܴଶ ൌ
ఉ೅௑೅௒ି௡௒

మ

௒೅௒ି௡௒
మ  … (4) 

 
R2 must be closer to 1 (which means 100 percent) 

in order to use the mathematical model, which is 
determined by the formulas given in Eqs (1–3), in the 
optimization stage. Since it implies in this situation 
that the variables used in modeling are adequate to 
describe the Y shift and there is no need to add 
additional variables to the model. If the R2 is closer to 

1, then the model's significance must be calculated in 
the last step prior to optimization. "Analysis of 
variance (ANOVA)" is used to do this. ANOVA is a 
statistical hypothesis test that utilizes the F-test to 
determine whether or not the regression model is 
significant. ANOVA has two hypotheses (H0, H1). H0 

implies the regression model is insignificant, while H1 

implies that the regression model is significant. So, H1 
must be valid in order to use the regression model in 
the optimization process. For hypothesis testing, the 
"p-value" technique may be used. In this analysis, 
Minitab's statistical package calculates the p-value. If 
the p-value is lower than the alpha (type-I error), it 
implies that H1 is true and that the model is 
significant. The confidence level is selected as 95% in 
this study. This means the type-I error = α = 0.05 
(5%). RSM can perform optimization using the 
gradient search algorithm if the model is significant. 
For GA optimization, these regression equations will 
also be used (for performing comparisons with RSM 
results). 
 
Experimental Results and Discussions 

In this study we used 4-poled 1500 rpm 25 kVA 
SG. The design of this SG is performed in Maxwell 
environment and values of the design parameters for 
this SG are listed in Table 1. The structure of the SG 
is also presented in Fig. 1. The SG is designed with 
0.8 rated power factor. In the Maxwell design, all 
winding material is used as standard copper. Si—Fe is 
used for lamination. Finally H-Class insulation 
material is selected.  

Table 1 — General design parameters for 4—poled 1500 rpm 25 kV

Name Value Unit Part Description 

Machine type — — — Three phase SG 
Outer diameter  290 mm Stator Core dia. (yoke side) 
Inner diameter 196.6 mm Stator Core dia. (gap side) 
Skew width 1 Units Stator Slot range number 
Length 170 mm Stator Core length 
Slot type 3 N/A Stator Circular  
Slots 36 Units Stator Number of slots 
Hs0 1 mm Stator Slot opening height 
Bs1 11.2 mm Stator Tooth width 
Hs2 13.4 mm Stator Slot height 
Outer diameter 195.4 mm Rotor Core dia. (yoke side) 
Inner diameter 55 mm Rotor Core dia. (gap side)  
Poles 4 — Rotor Number of poles 
Length 170 mm Rotor Core length 
Embrace 0.95 — Rotor Pole embrace  
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In the first stage the aim is to determine the 
mathematical relation between the factors (slot 
opening with (Bs0), height, and width) and the 
responses (pole-body flux density and air-gap flux 
density) by using regression modeling. To perform 
this phase, an experiment is designed by using ‘RSM 
face centered design’. Table 2 presents the factor 
levels for this experimental design. The graphical 
presentation of the experimental design is given in 
Fig. 2. In the standard design the level-2 for width is 
44.25 mm. However because of the constraints of 
serial production line, we used 44 mm instead of 
44.25 mm in the experimental design. 

Fifteen experimental runs are performed by 
Maxwell simulations, and the results are given in 
Table 3. By this way the drawback of producing real 
SG prototypes which is uncertain because of the costs 
is eliminated. 

Calculations for regression modeling and the tests 
for model significance are performed by Minitab 
which is a well-known statistical package program. 
The mathematical models are given in Eqs. (5) & (6).  
 
ଵܻ ൌ 4.915151518 െ 0.005316826 ଵܺ ൅
0.000933495ܺଶ െ 0.111799819ܺଷ ൅
0.001615556 ଵܺ

ଶ െ 0.000006007ܺଶ
ଶ ൅

0.000845729ܺଷ
ଶ ൅ 0.000054375 ଵܺܺଶ െ

0.000043790 ଵܺܺଷ െ 0.000008033ܺଶܺଷ …(5) 
 
ଶܻ ൌ 0.935042990 െ 0.009627237 ଵܺ െ
0.000089240ܺଶ െ 0.000233876ܺଷ ൅
0.000108 ଵܺ

ଶ ൅ 0.000001687ܺଶ
ଶ ൅

0.000001659ܺଷ
ଶ െ 0.00000325 ଵܺܺଶ ൅

0.000022191 ଵܺܺଷ ൅ 0.000000378ܺଶܺଷ …(6) 
 

The R2 statistics associated with the regression 
models of models Y1 and Y2 are 100 and 99.99% 
respectively. The model significance is tested with 
ANOVA. P-value is calculated as 0.000 for both 
models (which is < 0.05). This means the models 
given in Eqs. (5) & (6) are significant and these 
models will be able to use for optimization. The RSM 
face-centered design appears to reflect the given set of 
design parameters with good precision. In Table 4, the 
model performances are presented. According to this 
Table, the results of Minitab are the predicted results 

 

 
 

Fig. 1 — Structure of the SG 

 
 

Fig. 2 — RSM face centered design 

 

Table 2 — Factor levels that will be optimized 

Factors Symbols Unit Levels 

1 2 3 

Slot opening 
width  (Bs0) 

X1 mm 2.5 3 3.5 

Height X2 mm 20 24 28 
Width X3 mm 40 44 48.5 
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( îY ), while the results of the Maxwell simulations are 

the observed responses ( iY ). PE (%) is the ‘prediction 
error percentage”. The formula given in Eq. (7) 
calculates PE (%):  
 

%
| |

100    …(7) 

 
Results provided in Table 4 show that the 

regression models fit best with a maximum PE (%) < 
0.03% in the given observations. Confirmation results 
are provided in Table 5. 

The given observations in Table 5 are not used at 
the modeling phase previously. The findings provided 
in Table 5 show that the regression models have a 
reasonable good prediction performance (maximum 
PE (%) < 0.08%). Comparisons between the predicted 
values (Minitab results) and the observed values 
(Maxwell simulation results) have shown that it is 
possible to consider these numerical models for 
optimization. The 'Minitab Response Optimizer 
Module' is used to optimize the SG's design 
parameters for this purpose. The target values for the 
pole-body flux density and air-gap flux density are 
determined as 1.75 Tesla and 0.9 Tesla, respectively. 
In order for the system to reach high efficiency, it is 
necessary to reach the saturation of the sheet material 
used. The saturation point for 0.5 mm thick M530-
50A sheet used in this study is given as 1.75 Tesla.14 
The value in the gap between the rotor and the stator, 
which has been saturated, was determined as 0.9 
Tesla. This value was chosen as 0.9 Tesla, in 
accordance with the values between [0.8–1] Tesla in 
similar studies in the literature.15 

According to Fig. 3, this goals are seems to be 
reached. Bs0 has negative effect on air-gap flux 

Table 3 — The experimental design and simulation results 

Run 
i 

Factors 
 

Responses 

Pole-Body 
Flux Density 

(Tesla) 

Air-Gap Flux 
Density  
(Tesla) 

Xi1 Xi2 Xi3 Yi1 Yi2 

1 2.5 20 40.0 1.801 0.906 
2 3.5 20 40.0 1.805 0.898 
3 2.5 28 40.0 1.805 0.906 
4 3.5 28 40.0 1.809 0.898 
5 2.5 20 48.5 1.485 0.906 
6 3.5 20 48.5 1.488 0.898 
7 2.5 28 48.5 1.488 0.906 
8 3.5 28 48.5 1.492 0.898 
9 2.5 24 44.0 1.639 0.906 
10 3.5 24 44.0 1.643 0.898 
11 3.0 20 44.0 1.639 0.902 
12 3.0 28 44.0 1.642 0.902 
13 3.0 24 40.0 1.805 0.902 
14 3.0 24 48.5 1.488 0.902 
15 3.0 24 44.0 1.640 0.902 

 

Table 4 — Regression model performances 

Run(i) Pole-Body Flux Density
(Tesla) 

Air-Gap Flux Density (Tesla) 

1iY  
1îY  PEi1 (%) 

2iY  
2îY  PEi2 (%) 

1 1.801 1.80131 0.013 0.906 0.90620 0.002 
2 1.805 1.80502 0.001 0.898 0.89804 0.001 
3 1.805 1.80499 0.012 0.906 0.90619 0.003 
4 1.809 1.80914 0.008 0.898 0.89801 0.001 
5 1.485 1.48492 0.006 0.906 0.90599 0.001 
6 1.488 1.48826 0.017 0.898 0.89803 0.003 
7 1.488 1.48805 0.003 0.906 0.90601 0.001 
8 1.492 1.49182 0.012 0.898 0.89802 0.002 
9 1.639 1.63900 0.000 0.906 0.90605 0.005 

10 1.643 1.64276 0.015 0.898 0.89796 0.004 
11 1.639 1.63856 0.027 0.902 0.90201 0.001 
12 1.642 1.64220 0.012 0.902 0.90200 0.000 
13 1.805 1.80481 0.011 0.902 0.90205 0.006 
14 1.488 1.48795 0.003 0.902 0.90196 0.005 
15 1.640 1.64048 0.029 0.902 0.90198 0.002 

 

 
 

Fig. 3 — ‘Minitab Response Optimizer’optimization results 
 

Table 5 — Confirmation tests 

 Factors Pole-Body Flux Density 
(Tesla) 

Air-Gap Flux Density 

(Tesla) 

Run Xi1 Xi2 Xi3 
1iY  1îY  PEi1 (%) 

2iY  
2îY  PEi2 (%) 

16 2.7 22 42 1.716 1.71732 0.077 0.904 0.90447 0.052 
17 2.7 22 46 1.567 1.56664 0.023 0.904 0.90439 0.043 
18 2.7 26 42 1.719 1.71914 0.008 0.904 0.90446 0.051 
19 2.7 26 46 1.569 1.56833 0.043 0.904 0.90439 0.043 
20 3.3 22 42 1.719 1.71956 0.033 0.899 0.89959 0.066 
21 3.3 22 46 1.569 1.56877 0.015 0.899 0.89957 0.063 
22 3.3 26 42 1.721 1.72151 0.030 0.899 0.89958 0.065 
23 3.3 26 46 1.571 1.57059 0.026 0.899 0.89956 0.063 
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density (when the Bs0 increases the flux is 
decreasing), but it has no effect on pole-body flux 
density. The height has no significant effect on both 
responses. Finally, width has negative effect on 
pole-body flux density, but it has no effect on air-
gap flux density. The optimum factor levels are 
calculated as Bs0: 3.1 mm, height: 20 mm, and 
width: 41.2 mm. Table 6 provides the observed 
Maxwell-simulated responses, the Minitab-fitted 
expected responses, and the PE. Results presented 
in this table indicate that, the maximum PE  
(%) < 0.5%. The pole-body flux density is 
calculated as 1.751 Tesla (with 0.428% PE) and air-
gap flux density is calculated as 0.9013Tesla (with 
0.189% PE). The harmonics of the optimized SG 
are measured as 0.89 (which is close to 0), 
according to Maxwell simulations. The magnetic 
flux distribution of optimized SG and the voltage 
graph are given in Figs. 4 and 5, respectively. 
Manufactured rotor of the optimized SG is given in 
Fig. 6. 

In the electric engineering society, GA and PSO 
are widely used for optimization in the published 
papers. However the recently presented and effective 
MSGO is not used for this type of problem 
previously. So the optimization is also performed with 
these three optimization algorithm together and the 
results are compared with RSM. (The detail of the 
GA16–18, PSO19–21, and MSGO22 can be referred from 
the papers presented in the references). Matlab 
program is used for coding GA, PSO, and MSGO. In 
order to use these equations in Matlab environment 
for multi-objective optimization, the models must be 
derived for coded factor levels between −1 and 1. By 
this way the models become independent from the 
units and the multi-objective optimization can be 
performed easily by summing all equations under a 
unique fitness function. The coding is performed by 
using Eq. (8). The regression models for coded factor 
levels are given in Eqs (9) and (10). 
 

X௖௢ௗ௘ௗ ൌ
ଡ଼ೠ೙೎೚೏೐೏ି൫ሺଡ଼೘ೌೣାଡ଼೘೔೙ሻ/ଶ൯

ሺଡ଼೘ೌೣିଡ଼೘೔೙ሻ/ଶ
  …(8) 

ଵܻ ൌ 1.63111844135803൅ 0.0018985131396957 ଵܺ ൅
0.00179858229598891ܺଶ െ 0.1584ܺଷ ൅
0.000388888888888935 ଵܺ

ଶ െ
0.000111111111111121ܺଶ

ଶ ൅
0.0152593364197531ܺଷ

ଶ ൅
0.000125000000000016 ଵܺܺଶ െ
0.00012638312586448 ଵܺܺଷ െ
0.000120504840940569ܺଶܺଷ   …(9) 
 
ଶܻ ൌ
0.902 െ 0.004 ଵܺ ൅ 0.0000000000000000000257647ܺଶ ൅
0.0000000000000000002092576ܺଷ െ
0.0000000000000000000305262 ଵܺ

ଶ ൅
0.0000000000000000003729999ܺଶଶ ൅
0.000000000000000000361943ܺଷଶ ൅
0.0000000000000000001214913 ଵܺܺଶ െ
0.0000000000000000005577632 ଵܺܺଷ ൅
0.0000000000000000000320851ܺଶܺଷ …(10) 
 

Haupt & Haupt18 states that the continuous GA is 
faster than the binary GA, since before the cost 
function calculation, the chromosomes do not have to 
be decoded. Therefore, because of its benefit of 
having less storage, continuous GA was used in this 
study instead of binary GA. The maximum number of 
iterations in the algorithm is selected as 100000, with 

Table 6 — Confirmations for the optimum factor levels of RSM 

Response Maxwell 
(for RSM 
results) 

( iY ) 

Minitab 

( îY ) 

PE 
(%) 

Maxwell 
(for GA 
results) 

( iY ) 

GA 

( îY ) 

PE (%) Maxwell 
(for PSO 
results) 

( iY ) 

PSO 

( îY ) 

PE (%) Maxwell 
(for MSGO 

results) 

( iY ) 

MSGO 

( îY ) 

PE 
(%) 

Pole-Body Flux Density 
(Tesla) 

1.7585 1.7510 0.428 1.7585 1.7512 0.417 1.7580 1.7490 0.515 1.7580 1.7494 0.492 

Air-Gap Flux Density (Tesla) 0.9030 0.9013 0.189 0.9045 0.9061 0.177 0.9025 0.8996 0.322 0.9025 0.8996 0.322 

 
 

Fig. 4 — Magnetic flux density distribution of the optimized SG 
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a population number of 8. The crossover and mutation 
rates are selected as 0.5 (50%) and 0.4 (40%), 
respectively. These GA parameters are tuned via a 
series of preliminary experiments. A random integer 
number, between 1 and population size is determined 
as the cutting point and one-point crossover is 
applied. Since there are short chromosomes, one-point 
crossover was sufficient. The issue is modelled as a 
constrained problem of continuous optimization. The 
regression models given in Eqs (9) and (10) are used 
for this purpose, and then the GA algorithm is run 
under the given constraint via this model to optimize 
the factors Z function that is presented in Eq. (11) is 
the total error function and will be minimized by GA: 

 

ܼ݊݅ܯ ൌ ቚቀ ଵܻ,௧௔௥௚௘௧/݉ܽݔሺ ௜ܻଵሻቁ െ ቀ ଵܻ,௖௢ௗ௘ௗ/

 (11) …  2ܻ݅ݔܽ݉/݀݁݀݋ܿ,2ܻ−2ܻ݅ݔܽ݉/ݐ݁݃ݎܽݐ,1൅ܻ2ܻ݅ݔܽ݉

 
Min Z s.t.X1 ∈[−1,1]; X2∈[−1,1]; X3∈[−1,1]      … (12) 
 

Note that the ଵܻ,௧௔௥௚௘௧ ൌ 1.75 and ଶܻ,௧௔௥௚௘௧ ൌ
0.90in the equation of Z. In addition, ݉ܽݔሺ ௜ܻଵሻ and 
ሺݔܽ݉ ௜ܻଶሻ are the maximum observed response values 
presented in Table 3 (which are 1.809 and 0.906 for 
this problem, respectively). The CPU time is 
calculated as 25 seconds at a PC with a processor with 
Intel i5 2.4 GHz - 4 GB RAM. GA is calculated the 
optimized factor levels as X1 = 2.5 (coded value: −1), 
X2 = 24.1624 (coded value: −0.0406), and  
X3 = 41.2266 (coded value: −0.7114). For this 
optimized factor level combination; the pole-body 

flux density and air-gap flux density are calculated as 
1.7501 and 0.9061, respectively by continuous GA. 
When optimum factor levels are rounded to 1 decimal 
place according to mass production conditions (X1 = 
2.5, X2 = 24.2, X3 = 41.2), then the pole-body flux 
density and air-gap flux density are predicted by using 
Eq. (9) and Eq. (10) as 1.7512 and 0.9061, 
respectively. 

The maximum number of iterations for the PSO is 
selected as 1000 and the population size (swarm size) 
is selected as 100. Via a series of preliminary 
experiments, these PSO parameters were selected as 
follows: inertia weight (w) = 1, inertia weight 
damping ratio (wdamp) = 0.99, personal learning 
coefficient (C1) = 1.5, and global learning coefficient 
(C2) = 2.0. PSO is run through Eqs (9) – (12) and the 
optimized factor levels are calculated as X1 = 3.25 
(coded value: 0.5), X2 = 22.4648 (coded value: 
−0.3838), and X3 = 41.2703 (coded value: −0.7011). 

 
 

Fig. 5 — Voltage graph of the optimized SG 

 
 

Fig. 6 — Manufactured rotor of the optimized SG 
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For this optimized factor level combination; the pole-
body flux density and air-gap flux densities are 
calculated as 1.75000098 and 0.9, respectively. The 
CPU time is calculated as 20.5 sec. When optimum 
factor levels are rounded to 1 decimal place according 
to mass production conditions (X1 = 3.3,  
X 2= 22.5, X3 = 41.3), then the pole-body flux density 
and air-gap flux density are predicted by using Eqs (9) 
& (10) as 1.749 and 0.8996, respectively. 

The MSGO parameters are referred from the 
literature22, 23 and via a series of preliminary 
experiments. The maximum number of iterations is 
selected as 1000 and the population size is selected as 
30. MSGO is also run through Eqs (9) – (12) and the 
optimized factor levels are calculated as X1 = 3.25 
(coded value: 0.5), X2 = 23.3784 (coded value: 
−0.1554), and X3 = 41.2814 (coded value: −0.6985). 
For this optimized factor level combination; the pole-
body flux density and air-gap flux density are 
calculated as 1.7499916 and 0.9, respectively. The 
CPU time is calculated as 15.22 sec. When optimum 
factor levels are rounded to 1 decimal place according 
to mass production conditions (X1 = 3.3, X2 = 23.4, X3 

= 41.3), then the pole-body flux density and air-gap 
flux density are predicted by using Eq. (9) and Eq. 
(10) as 1.7494 and 0.8996, respectively. 

Optimization results of GA, PSO, and MSGO are 
also presented at Table 6. To confirm the optimization 
results, Maxwell simulations are performed. The 
overall prediction performances for all four methods 
are very good and PE (%) is less then %1. If the time 
complexity analysis is performed, it is clearly 
observed that RSM has advantages when compared 
with GA, PSO, and MSGO. CPU time is not 
applicable for RSM because it given the analysis 
results instantly. Also the original factor levels can be 
used instead of coding them. So coding and uncoding 
(after optimization) is not needed in RSM. Finally the 
better run parameters of GA and PSO is especially 
needed to be tuned before running; while RSM does 
not need any parameter optimization for gradient 
search. When the GA, PSO and MSGO are compared 
in each other, MSGO have less parameter to tune 
(only number of iterations and population size) which 
makes it very efficient as well. 

When the optimum factor values obtained were 
also evaluated in terms of mass production, several 
remarkable inferences were obtained. For example, 
the results obtained show that as the Bs0 value 
approaches 3.5 mm, 3 enamel wire slots can pass 

through the opening width (Bs0) more easily and this 
width is more suitable for mass production. However, 
increasing this gap (Bs0) prevents reaching the 
desired magnetic flux values and efficiency in the 
stator. When the Bs0 value approaches the lower limit 
of 2.5, the magnetic flux and efficiency reach the 
desired level more easily, while 2 enamel wires can 
hardly fit into the slot opening width. This slows 
down the mass production considerably due to the 
enamel wires placed one by one in mass production. 
Accordingly, the most suitable value of Bs0 for mass 
production (also providing the desired magnetic 
density distribution value) was found to be 3.1. 

In order for the salient pole of rotor to be 
magnetically saturated, the pole width of the rotor is 
expected to be as wide as possible. However, the 
winding to be wrapped around the salient pole can fit 
in a limited volume. Therefore, as the width narrows, 
the winding fits more easily into this predetermined 
limited volume (suitable for mass production); in the 
opposite direction (at which the optimum magnetic 
density distribution value can be obtained) the largest 
width was found to be 41.2 mm. 

The results showed that pole height does not have a 
noticeable effect on responses for this sample SG 
structure in the article (causes little changes). The 
reason for this is efficient flux is occurred upper part 
of the pole. This causes the length of the pole height 
not to have much effect on the magnetic flux. As 
mentioned above, this issue is valid only for the SG 
considered in this case study.  

These results and discussions can be expanded by 
using additional optimization methods such as 
hybridized improved GA24, teaching learning based 
optimization25, social group optimization (SGO)26, 
jaya algorithm27, non-dominated sorting SGO 
algorithm28, and etc., in the future researches. 
 
Conclusions 

In this study rotor design optimization of 4-poled 
1500 rpm 25 kVA SG is performed. The goal is to 
determine the optimal slot opening width (Bs0), 
height, and width factor levels to keep the magnetic 
flux density distribution in a desired range. The aim is 
to obtain 1.75 Tesla and 0.9 Tesla for the ‘pole-body 
flux density’ and ‘air-gap flux density’, respectively. 
RSM is used for optimization and the observations are 
obtained from Maxwell simulations. As a result, the 
desired magnetic flux distributions are obtained with a 
very small prediction errors (<0.05). R&D work was 
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successfully completed by obtaining 25 kVA from the 
SG as aimed in the tests carried out on the real 
prototype whose production was completed. Results 
obtained by RSM are also compared with GA, PSO 
and MSGO results. It is observed that although the 
results of the four methods are almost the same, 
however one of the advantages of RSM is that it does 
not require program coding and offers the opportunity 
to visually examine the relationships between factors 
and responses. According to the time complexity 
analysis, it is clearly observed that the RSM is less 
complex than GA, PSO, and MSGO. When the GA, 
PSO and MSGO are compared in each other, it can be 
clearly observed that MSGO have less parameter to 
tune and produces very accurate results which makes 
it very efficient as well. As a future research we will 
expand the work for higher power groups, additional 
design parameters, and additional optimization 
methods.  
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