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Selective weed treatment is a cost-effective method that reduces manpower and usage of the agrochemical, at the same 

time it requires an effective computer vision system to identify weeds and should be smaller in size to run in resource-

constrained devices. To accomplish this, a convolution neural network named Reduced Residual U-Net using Depth-wise 

separable Convolution (RRUDC) network is proposed in this paper. Residual Depth-wise separable Convolution Block 

(RDCB) is introduced as a functional unit in both contractive and expanding paths. Residual connection is incorporated 

inside every RDCB unit. This network employs semantic segmentation to analyze the crop field images pixel-wise. 

To reduce the parameter size, a depth-wise separable convolution technique is used which curtail the number of parameters 

generated by the model at a ~1/9 ratio with a very negligible drop in accuracy. The model is trained using Crop Weed Field 

Image Dataset (CWFID) and then the trained model is pruned to reduce the model size further. It compresses the final model 

size by around ~70% without affecting the performance. It has achieved segmentation accuracy of ~96%, a lesser error rate 

with a model size less than 3 MB. It can be compatible with converting the proposed deep learning model into a real-time 

computer vision application that seems more convenient for farmers in their resource-constrained devices on their 

agricultural land. 
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Introduction 

The demand for food is growing rapidly due to the 
increase in the world population. Indian economy will 
reach greater heights if we cultivate and export more 
food products from our county. On the other side, the 

farmers involved in agriculture want to give up 
farming due to poor income and unbearable loss. So, 
smart farming techniques are required for the farmers 
to increase their productivity in agriculture, which 
helps the farmers to reduce their agricultural 
expenses. It involves robots in agricultural work to 

facilitate the automated process and reduces the labor 
required for agricultural work.

1
 

Weed is one of the major threats to crop yield. The 
presence of weeds in crop fields has an indirect impact 
on both the quantity and quality of crop yield. Weeds 
impose degradation in yields in an invisible way. 

Manual removal of weeds and wide spraying of 
agrochemical products increase the expenses as well 
as affect the surrounding crops. Usage of more 
herbicides may be a cause of toxic produce. 

A proper selective weed treatment is required to 

resolve this issue and it is a very important milestone 

in smart farming. The success of this process is based 

on the segmentation accuracy in differentiating weed 

from crop otherwise it affects surrounding crops. 

Computer vision techniques can be used to process 

the agriculture field digital images and extract 

significant information from them.
2
 

The extracted information is passed to the robots. 

It automatically plucks or sprays herbicides in 

segmented weed portions in a smooth way without 

affecting surrounding crops and it also reduces the 

usage of agrochemicals.
3
 

At first, the deep learning model is trained by crop 

field images. The input data for the training model 

contains field RGB images and their corresponding 

annotated images. In this, pixels are belonging to the 

background, crops, and weeds. So, pixel-wise labeling 

facilitates smooth and accurate segmentation.
4
 

Then the trained model is capable to segment new 

data. The network model architecture is Encoder-

Decoder based Convolution Neural Network. In this, 

the blocks are organized in a way that each decoder 

block corresponds to its encoder block.
5,6 

The encoder 

encodes the high dimensional image into low 

dimensional feature maps by extracting the important 

features and the decoder decodes the feature maps 
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back to high dimensional one. To achieve the high 

accuracy of segmentation, the system model is built 

based on Unet
7,8

, DeepUnet
9
,
 
and Residual Blocks.

10
 

Most of the research work in the literature 

addresses achieving high accuracy of segmentation. 

Furthermore, in agricultural land, the user may have a 

resource constraints and low computational facilities. 

So, building a real-time application to aid farmers 

regarding automated selective weed treatment, require 

a deep learning model in a smaller size but without 

compromising the accuracy of classification. The 

pathway for achieving this is reducing the number of 

trainable parameters in the model and compressing 

the model. 

The core operation of the convolution neural 

network is the convolution process. Usually, a 

convolution process with a large number of filters 

generates millions of parameters and billions of 

calculations. On the other hand, it extracts different 

types of important features from the image. In the 

process of reducing the number of parameters and 

computations, if we reduce the number of filters used 

in the convolution layers, it automatically affects the 

segmentation accuracy. Depth-wise separable 

convolution technique
11 

is a suitable alternative for the 

convolution process which reduces the number of 

parameters at a high rate with a very negligible drop 

in accuracy. 

Further reduction in model size can be done by 

compressing the trained model using the pruning 

technique. Thus, the final trained model is applied for 

filter pruning. It removes the redundant and 

unimportant filters. The final model size can be 

reduced significantly without affecting the 

segmentation accuracy.
12

 The segmentation results of 

various architecture and proposed architecture are 

shown in Fig. 1 and Fig. 2 respectively. 
 

Related Work 

Badrinarayanan et al.
13

 proposed an encoder-

decoder-based SegNet architecture for autonomous 

driving car applications. In this work, the usage of 

pixel-wise labeling to segment road scene objects like 

vehicles, buildings, pedestrians, trees, and other 

objects for smooth driving of a car, is considered. 

Both encoder and decoder have 13 convolution layers 

on each side.  

Yasrab et al.
14

 proposed a CNN model for driver 

assistance system (CSSA), which employed a 

semantic segmentation technique. The CSSA 

architecture was followed the SegNet architecture 

along with the dropout layer. The model size of CSSA 

was ~30 MB and achieved average class accuracy 

(CAA) was 60.2%. 

The work proposed by Lottes et al.
15

 detected 

vegetation by combining random forest classification 

and Markov random field in the sugar beet crop and 

weed dataset. The classification was done on the 

mobile robots and its perceptron triggers actuators for 

removing weeds and splashing herbicides on weeds. 

In Umamaheswari & Jain
16

, the objective was  

to use the SegNet architecture with pixel-wise 

 
 

Fig. 1 — Segmentation results of different architecture for 

comparison: (a) Input RGB image, (b) Target Label image, (c) 

Prediction image of SegNet512, (d) Prediction image of U-Net, 

(e) Prediction image of Residual U-Net, (f) Prediction image of 

proposed RRUDC architecture 
 

 
 

Fig. 2 — Few more segmentation results of proposed RRUDC 

architecture. (a) Input RGB image, (b) Target Label image,  

(c) Prediction image 
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segmentation for crop-weed classification and the 

dataset used here was Crop-Weed Field Images 

Dataset (CWFID). Here, Segnet256 and Segnet512 

were proposed, in which SegNet512 produced  

an F1 score of ~96% for segmentation and the number 

of parameters generated by SegNet512 was  

quite large, that is 16.35 million. Sa et al.
17

 used  

the dense semantic weed classification for  

crop-weed classification and it employed SegNet 

architecture. 

Ronneberger et al.
8
 proposed U-net architecture, 

which comprises a contracting path and a symmetric 
expanding path. The concatenation operation was 
used here, which is used to combine the feature map 
from the contractive path with expanding path, since 

this model used the unpadded convolution, there is a 
possibility of losing corner features. Xie et al.

7
 used 

the UNet architecture in a modified version for 
segmenting the head-shoulder portion of pedestrians. 
It generated a huge number of parameters because  
it used a large number of filters in this architecture. 

Augustaukas & Lipnickas
18

 proposed a pixel-wise 
road pavement defect detection method whose model 
structure was the U-Net architecture with the padded 
convolution process. This was used to detect the 
pixel-level cracks in the road which helped in the 
maintenance and monitoring of roads. 

The objective of this work by Yang et al.
19 

was to 

incorporate residual learning in the U-Net architecture 

called the Residual Dense U-Net (RDUN). It 

introduced the Residual DenseBlock (RDB) which 

enables a residual connection between the 

convolution layers. It was computationally expensive 

because it has used 42 convolution layers.  

Naqvi et al.
10 

proposed an ocular recognition 

system that was based on lite-residual encoder-
decoder SegNet architecture. This network used 1000 
original images along with data augmentation for 
training and testing. Li et al.

9
 proposed a DeepUNet, 

whose structure was based on the U-Net architecture. 
In this work, DownBlock, and UpBlock were 

introduced in the contracting path and expansive path 
respectively. These blocks incorporated the plus 
connection between the convolution layers present in 
the block. 

Chen et al.
20

 proposed a separable convolution-
based model with smaller size images like 32 × 32 

images. The idea of a depth wise separable 
convolution instead of the standard convolution in its 
fire module of a SqueezeNet-DSC is obtained from 
the work proposed by Santos et al.

21
 The SqueezeNet-

DSC experienced a drop in accuracy of 4% when 
compared to SqueezeNet. 

Mao et al.
22

 proposed an object tracking system 

using deep learning and a Siamese network. In this 

work, the parameter reduction and model size 

reduction was achieved with depth-wise separable 

convolution and pruning process respectively. Even 

though it achieved a size reduction significantly, it 

used larger kernels like 11 × 11 and 7 × 7 in the 

network. So, there is a requirement for further 

improvement for this network architecture. 

Huang et al.
12

 proposed a ―try-and-learn‖ algorithm 

that trains pruning agents to evacuate unnecessary 

CNN filters in a data-driven way. It succeeded in 

evacuating a significant number of filters in various 

CNN architectures like VGG16, ResNet, FCN32, and 

SegNet while maintaining the performance at an 

optimal level. In visual recognition and semantic 

segmentation tasks, there exists an average drop in 

accuracy up to 3.4%. The objective of this work by 

Cai et al.
23

 was to use dropout techniques to prevent 

the model from overfitting. In this work, four 

different dropout methods namely, drop-neuron,  

drop-channel, drop-path, and drop-layer were 

proposed.  

The objectives of this study are i) to build U-Net 

architecture with the incorporation of residual 

learning to increase the segmentation accuracy, ii) to 

reduce the number of parameters consumed by the 

model using depth-wise separable convolution, iii) to 

minimize the error rate using drop-out layer iv) to 

achieve the reduction in final model size using 

pruning techniques. 
 

Materials and Methods 
The primary objective of the proposed approach is 

to build an effective computer vision system using a 

deep learning model to facilitate pixel-wise labeling 

in-order to classify the crops and weeds accurately 

from the agricultural land. This can be used to aid 

robotics to do selective spraying and mechanical weed 

removal. The proposed model is efficient in all 

aspects such that achieving high segmentation 

accuracy, computationally less complex, reduction in 

model size, and lesser error rate. The workflow of the 

proposed work is shown in Fig. 3.  

 
 

Fig. 3 — Workflow of proposed work 
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Methodology 
 

Proposed Model Architecture 

The proposed Reduced Residual U-Net using 

Depth-wise separable Convolution (RRUDC) is an 

Encoder-Decoder based U-Net architecture
8 

in which 

standard convolution blocks are replaced with Depth-

wise Separable Convolution blocks to reduce the 

number of parameters consumed by the model. This 

architecture comprises of totally 19 convolution 

layers which are lesser than some of the outstanding 

architectures: VGG19
24

, SegNet
13

, DeepUNet.
9
 The 

proposed RRUDC architecture is illustrated in Fig. 4. 

All convolution layers are using the same padding 

convolution of constant 3 × 3 filter
24

; which is smaller 

than the filter size used in the models
18

 and the stride 

value is fixed to 1 pixel. The output size of the 

convolution process can be found using Eq. (1).  
 

𝑆 =  
𝐹+2𝑝−𝑘

𝑠
+ 1               … (1) 

 

where, S and F are the sizes of output and input of 

the convolution process respectively, p is the padding 

pixel, k is the size of kernel or filter and s is the stride 

value.  

In the proposed RRUDC, a Residual Depth-wise 

separable Convolution Block (RDCB) is introduced. 

Among the 19 convolution layers, 16 convolution 

layers are organized as 8 RDCB units (in which 4 

units are located in the contracting path; 4 units are 

located in the expanding path), one-layer acts as the 

middle layer, and two layers are used to input and 

output the image. In addition to that, a down-sampling 

layer and dropout layer are added in the contracting 

path after the RDCB unit, and in expanding path up-

sampling layer is added. Going deeper into the 

contracting path, the number of filters used in the 

RDCB unit is increased as 32, 64, 128, 256 which is 

lesser than the number of filters used in the modified 

U-Net network
7
, and the reversed order is used in 

expanding path. The middle layer contains 512 

numbers of filters. 

Here, the output of each RDCB unit in the 

contracting path is integrated with the same level of 

RDCB unit in the expanding path through the 

concatenation unit. The concatenation unit, which 

combines the output of each contracting path RDCB 

unit with the feature map from the corresponding  

up-sampling layer, then is fed into the RDCB unit. 

Hence, the location information is integrated  

with contextual information to form generalized 

information which helps to obtain excellent 

segmentation accuracy.  

Drop-channel is an effective method of dropout 

layer when compared to other dropout variants 

proposed in the work
23

 which restrain the model from 

overfitting. In this work, the dropout layer is added at 

the RDCB unit level. It helps to reduce the error rate 

of the segmentation process significantly. The output 

 
 

Fig. 4 — The structure of reduced residual U-Net using depth-wise separable convolution (RRUDC) model architecture 
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of the final RDCB unit on the decoder side is given to 

the softmax layer via the standard convolution layer 

which is used to find the class probabilities of each 

pixel in crop filed image and classify image portion 

pixel-wise. The detailed RRUDC architecture 

configuration is shown in Table 1.  
 

Residual Depth-wise Separable Convolution Block (RDCB) 

The structure of the RDCB unit is shown in Fig. 5. 

Each unit contains two convolution layers and  

one residual connection. Each convolution layer is 

followed by the ReLU activation layer and  

Batch Normalization (BN) layer to increase the 

segmentation accuracy and its outputs are represented 

by y1 and y2. Assuming x, y is the input and output of 

Table 1 — The configuration of the proposed RRUDC architecture 

Block/ Unit Level Layer Filter size No. of layers/ unit No. of filters Outputsize 

Initial Conv_IP 3 × 3 1 64 224 × 224 × 64 

BLOCK 

C1 

Conv_C1 3 × 3 2 32 224 × 224 × 32 

Rcon_C1  — 1 — 224 × 224 × 32 

Downsamp1 2 × 2 1 — 112 × 112 × 32 

Dropout_C1 (*dropout_rate = 20%) 112 × 112 × 32 

BLOCK 

C2 

Conv_C2 3 × 3 2 64 112 × 112 × 64 

Rcon_C2  — 1 — 112 × 112 × 64 

Downsamp2 2 × 2 1 — 56 × 56 × 64 

Dropout_C2 (*dropout_rate = 20%) 56 × 56 × 64 

BLOCK 

C3 

Conv_C3 3 × 3 2 128 56 × 56 × 128 

Rcon_C3  — 1 — 56 × 56 × 128 

Downsamp3 2×2 1 — 28 × 28 × 128 

Dropout_C3 (*dropout_rate = 50%) 28 × 28 × 128 

BLOCK 

C4 

Conv_C4 3 × 3 2 256 28 × 28 × 256 

Rcon_C4 — 1 — 28 × 28 × 256 

Downsamp4 2 × 2 1 — 14 × 14 × 256 

Dropout_C4 (*dropout_rate = 50%) 14 × 14 × 256 

Middle Unit Conv_MID 3 × 3 1 512 14 × 14 × 512 

BLOCK 

E1 

Up_Samp1 2 × 2 1 — 28 × 28 × 512 

Concat_1 — 1 — 28 × 28 × 768 

Dropout_E1 (*dropout_rate= 50%) 28 × 28 × 768 

Conv_D1 3 × 3 2 256 28 × 28 × 256 

Rcon_E1  — 1 — 28 × 28 × 256 

BLOCK 

E2 

Up_Samp2 2 × 2 1 — 56 × 56 × 256 

Concat_2 — 1 — 56 × 56 × 384 

Dropout_E2 (*dropout_rate= 50%) 56 × 56 × 384 

Conv_D2 3 × 3 2 128 56 × 56 × 128 

Rcon_E2 — 1 — 56 × 56 × 128 

BLOCK 

E3 

Up_Samp3 2 × 2 1 — 112 × 112 × 128 

Concat_3 — 1 — 112 × 112 × 192 

Dropout_E3 (*dropout_rate= 20%) 112 × 112 × 192 

Conv_3d1 3 × 3 2 64 112 × 112 × 64 

Rcon_E3 — 1 — 112 × 112 × 64 

BLOCK 

E4 

Up_Samp4 2 × 2 1 — 224 × 224 × 64 

Concat_4 — 1 — 224 × 224 × 96 

Dropout_E4 (*dropout_rate= 20%) 224 × 224 × 96 

Conv_4d1 3 × 3 2 32 224 × 224 × 32 

Rcon_E4 — 1 — 224 × 224 × 32 

Output Conv_OUT 3 × 3 1 3 224 × 224 × 3 

Softmax — 1 — 224 × 224 × 3 
 

 
 

Fig. 5 — The structure of residual depth-wise separable 

convolution block (RDCB) unit 
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an RDCB unit, the ReLU activation function, and 

Batch Normalization is represented by σ, convolution 

operation represented by Mci and the function of the 

RDCB unit is represented by MRDCB respectively.  

The mathematical form of y1 and y2 are mentioned in 

Eq. (2) and (3) respectively.  
 

y1 = σ (Mc1 (x))               … (2) 

y2 = σ (Mc2 (y1)) 

= σ (Mc2 (σ (Mc1 (x))))               … (3) 
  

The residual connection layer adds both outputs y1 

and y2 and then fed into ReLU activation layer and 

BN layer whose output is represented in the Eq. (4). 
 

y = MRDCB (x) 

 = σ (y1 + y2) 

 = σ (σ (Mc1 (x)) + σ(Mc2 (σ (Mc1 (x)))))   …(4) 
 

The residual connection path in the RDCB unit 

facilitates local residual learning to improve the 

information flow among architecture blocks. It will 

improve the representation capacity of the model and 

will curtail the error rate of the segmentation with the 

smaller dataset. So, the corner features of the crops 

and weeds can be predicted accurately. 
 

Pixel-wise Labelling 

Pixel-wise labelling is an effective method to 

analyze crop field images.
13

 This helps the model to 

interpret the image pixel-wise and it facilitates to 

label each pixel to a certain class. Crop field images 

may have three categories of pixel components which 

are crop, weed, and soil. So, it is assumed as three 

classes (n =3) and its class values are assigned as 

{soil, crop, weed} = {0, 1, 2}. The model yields 

pixel-wise prediction P ∈ {0, 1, 2}. Because of this, 

each pixel in the image assigns to either 0-soil, 1-

crop, or 2- weed. By this, weed portion in crop field 

can easily be detected and it can be either removed or 

sprayed agrochemical products on it.  
 

Depth-wise Separable Convolution 

In general, the model size increases along with this 

number of parameters if the number of parameters 

increases. Moreover, a model with a huge number of 

parameters requires more energy and space. Hence it 

is impractical to use it in resource-constrained devices 

that have been used by the farmers on agricultural 

land. 

Convolution is a core operation of a Convolution 

Neural Network that is used to extract useful 

information from the image. It involves a huge 

number of different filters to extract different features 

from the image. All these extracted features are 

associated to give a better understanding of the image. 

But the problem with the standard convolution is that 

it is computationally expensive. The process of 

standard convolution is shown in Fig. 6a. The 

mathematical form for finding the number of 

multiplications (NMC) and parameters (NPC) 

consumed by the standard convolution is given in the 

following Eq. (5) and (6) respectively. 
 

NMC = Sk× Sk×Nic× Noc× Sf × Sf    …(5) 
 

NPC = Sk× Sk×Nic× Noc               …(6)  
 

where, Sk and Sf represent the size of the kernel and 

feature map respectively, Nic and Noc represent the 

number of input and output channels respectively. 

Standard convolution is quite large because the size of 

each convolution filter used in the standard 

convolution is Sk× Sk × Nic. 

To overcome this, depth-wise separable 

convolution (DSC) is used instead of standard 

convolution. This DSC operation is performed in two 

phases which are depth-wise convolution and point-

wise convolution.
20,22

 The process of depth-wise 

separable convolution is shown in Fig. 6b. At first, 

depth-wise convolution filters whose size is Sk× Sk ×1 

apply to the single input channel of an input image. It 

will be carried for entire input channels Nic and then 

stacked together all the outputs to form intermediate 

feature map G. In point-wise convolution, the 

intermediate feature map G is convolved with Noc 

number of filters whose size is 1 × 1 × Nic to form the 

final feature map. Hence, it assures that features can 

be extracted from both spatial and channel levels. The 

 
 

Fig. 6 — The operation of convolution process: (a) Standard 

Convolution technique, (b) Depth-wise Separable Convolution 

technique 
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number of multiplications (NMDSC) and parameters 

(NPDSC) consumed by the depth-wise separable 

convolution is given in the following Eqs (7) & (8) 

respectively. 
 

NMDSC = (Sk×Sk×Nic×Sf×Sf)+(Nic×Noc×Sf×Sf)    … (7) 
 

NPDSC = (Sk × Sk × Nic) + (Nic × Noc)              … (8) 
 

The ratio between the standard convolution and 

depth-wise separable convolution regarding the 

number of multiplication and parameters are given 

below in Eqs (9) & (10) respectively. For example, 

assuming the filter size Sk = 3 and the number of input 

channels Nic= 64, we obtain the ratio as 0.1267. This 

means that the parameters in depth-wise separable 

convolution are reduced to ~1/9 parameters when 

compared to that of standard convolution.  
 
𝑁𝑀𝐷𝑆𝐶

𝑁𝑀𝐶
 =

1

𝑁𝑖𝑐
+

1

 𝑆𝑘 
2               … (9) 

 
𝑁𝑃𝐷𝑆𝐶

𝑁𝑃𝐶
=

1

𝑁𝑖𝑐
+

1

 𝑆𝑘 
2              … (10) 

 

With the various improvements in the architecture, 

it can achieve ~88% reduction in parameters and with 

a very negligible drop in accuracy when compared 

with models proposed in the work.
21

 
 

Pruning the Model 

Usually, the machine/deep learning model is the 

core component of computer vision applications. It 

demands a lower size model to build a real-time 

computer vision application, for helping the farmers, 

since the target environment (agricultural land) of 

those applications has resource constraint devices. If 

the deep learning models are larger sized, they might 

be successful in achieving better performance in a lab 

setup, but it finds it hard to be deployed in resource-

constrained devices. Even though it has been 

deployed, it fails to give better results. For this, the 

proposed deep learning model has been compressed 

using filter pruning. 

After building the final model, the model will be 

carried to the training process till achieving better 

validation accuracy and test accuracy. Subsequently, 

the model will be exposed to the pruning process to 

reduce the size of the model.
25,22

 During the pruning 

process, iteratively eliminate redundant and 

insignificant connections and their corresponding 

unnecessary lowest magnitude weights of the trained 

model. So the connection between the channels will 

become sparse. This pruning process achieves 

significant size reduction in the final model and it can 

be delivered by less than ~3 MB in size without 

significant recession in performance. 
 

Data Preprocessing 

The dataset used here is the benchmark dataset 

Crop/Weed Field Image Dataset CWFID).
26

 This 

dataset contains 60 RGB images with their 

corresponding annotated images. All these images are 

captured in an organic carrot field. The success of 

building an efficient deep learning model requires a 

large number of images to train the model otherwise 

model is prone to overfit. Data augmentation is the 

efficient way to overcome this drawback which is 

used to create a new larger dataset from the existing 

smaller dataset by creating transformed versions of 

original images. This helps to upgrade the ability of 

the model to generalize and improve its performance. 

Initially, the existing 60 RGB images and annotated 

images are divided into a 5:1 ratio for the training and 

testing process. At this rate these images are 

processed for various augmentation techniques like 

rotation, horizontal flipping, shifting in height and 

width, zooming, and shearing which results in the 

creation of a new dataset containing 750 training 

images and 100 testing images, and every image is 

resized to 224 × 224 × 3.  
 

Experimental Environmental Design  
 

Experimental Setup 

All the models utilized in this work are based on 

the Tensor Flow and Keras framework. These models 

have experimented on the online Google Colab 

platform which provides NVIDIA TeslaT4 GPU with 

CUDA Version 11.2, RAM of 13 GB, and Disk Space 

of 68 GB. Google Colab is a Google product that 

allows python code to be run on a cloud 

environment via a web browser, and hence there is 

no hardware restriction for it. Simple computers 

with an internet connection are capable of  

running it. 
The proposed network is trained from the scratch 

using a dataset of 750 RGB images and its equivalent 

annotated images or labeled images; each image  

is a size of 224 × 224 × 3. For validation process, 

validation_split = 0.2 is used. i.e., 20% of the data in 

the training dataset is allotted for validation. In every 

epoch, 600 images are used for the training process 

and 150 images are used for the validation process. 

For the testing process, a separate test data set is built 

which contains 100 RGB images and their equivalent 
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labeled images. The proposed system is trained with 

80 training epochs with the batch size as 5 images per 

batch and each epoch contains 120 steps. The loss 

function used here is categorical_cross_entropy. 

Since, it has three classes which are crop, weed, and 

soil, this loss function is quite suitable. This measures 

the cross-entropy loss between the label and 

prediction. For this, labeled images are transformed 

into one-hot representations for facilitating the 

comparison between prediction and labels. During the 

training, the loss between the prediction and labels is 

optimized utilizing an ADAM optimizer with a 

learning rate of 0.001. It is a stochastic gradient 

descent method that depends on the adaptive 

estimation of first-order and second-order moments.  

In the proposed model, for the top two RDCB units 

in the contractive path and expanding path it uses a 

lesser dropout rate which is 20%, and going deeper 

into the architecture dropout rate is increased to 50%. 

Sparsity rate is an important hyper-parameter of the 

pruning process which specifies the number of 

weights that have to be pruned away from the model. 

In the proposed work, the sparsity rate ranges from 

50% to 90% in the pruning schedule. After pruning 

the model, two more training epochs were 

implemented for fine-tuning the model. The other 

significant deep learning architecture like SegNet, 

based on
13

, U-Net, used in
7
 and Residual U-Net based 

on
19 

is implemented and its architecture configuration 

details are given in Tables 2–4. These architectures 

are trained with the same augmented CWFID dataset 

in the same experimental setup and the performance is 

evaluated for comparison.  
 

Evaluation Metrics 

In this paper, we have used six metrics to evaluate 

the performance of the model, which are  

1. Accuracy (A),  

2. Error-rate (E), 

3. Overall Precision (OP), 

4. Overall Recall (OR), 

5. Overall F1 score (OF), 

6. Number of Parameters (NoP) 

Accuracy (A) states that the percent of the pixels in 

the prediction image is predicted correctly when 

compared to the label image. Error-rate (E) is 

expressed as the rate of pixels in the prediction image 

is predicted wrongly, when compared to label images. 

Overall Precision (OP) is the ratio of positive 

predictions which are actually precise. Overall Recall 

(OR) is the ratio of actual positive predictions which 

Table 2 — The configuration of SegNet architecture 

Layer Kernel 

size 

No. of 

layers 

No. of 

filters 

Output  

shape 

Conv_IP 3 × 3 1 64 224 × 224 × 64 

Conv_1E 3 × 3 2 64 224 × 224 × 64 

Down_samp1 2 × 2 1 — 112 × 112 × 64 

Conv _2E 3 × 3 2 128 112 × 112 × 128 

Down_samp2 2×2 1 — 56 × 56 × 128 

Conv _3E 3 × 3 2 256 56 × 56 × 256 

Down_samp3 2 × 2 1 — 28 × 28 × 256 

Conv _4E 3 × 3 2 256 28 × 28 × 256 

Down_samp4 2 × 2 1 — 14 × 14 × 256 

Conv _5E 3 × 3 2 512 14 × 14 × 512 

Down_samp5 2 × 2 1 — 7 × 7 × 512 

Up_samp1 2 × 2 1 — 14 × 14 × 512 

Conv _1D 3 × 3 2 512 14 × 14 × 512 

Up_samp2 2 × 2 1 — 28 × 28 × 512 

Conv _2D 3 × 3 2 256 28 × 28 × 256 

Up_samp3 2 × 2 1 — 56 × 56 × 256 

Conv _3D 3 × 3 2 256 56 × 56 × 256 

Up_samp4 2 × 2 1 — 112 × 112 × 256 

Conv _4D 3 × 3 2 128 112 × 112 × 128 

Up_samp5 2 × 2 1 — 224 × 224 × 128 

Conv _5D 3 × 3 2 64 224 × 224 × 64 

Conv_OUT 3 × 3 1 3 224 × 224 × 3 

Softmax — — — 224 × 224 × 3 
 

Table 3 — The configuration of U-Net architecture 

Layer Kernel 

size 

No. of 

layers 

No. of 

filters 

Output shape 

Conv_IP 3 × 3 1 64 224 × 224 × 64 

Conv _1C 3 × 3 2 64 224 × 224 × 64 

Down_samp1 2 × 2 1 — 112 × 112 × 64 

Conv _2C 3 × 3 2 128 112 × 112 × 128 

Down_samp2 2 × 2 1 — 56 × 56 × 128 

Conv _3C 3 × 3 2 256 56 × 56 × 256 

Down_samp3 2 × 2 1 — 28 × 28 × 256 

Conv _4C 3 × 3 1 512 28 × 28 × 512 

Down_samp4 2 × 2 1 — 14 × 14 × 512 

Conv _Mid 3 × 3 1 512 14 × 14 × 512 

Up_samp1 2 × 2 1 — 28 × 28 × 512 

Concat_1 — — — 28 × 28 × 1024 

Conv _1E 3 × 3 2 512 28 × 28 × 512 

Up_samp2 2 × 2 1 — 56 × 56 × 512 

Concat_2 — — — 56 × 56 × 768 

Conv _2E 3 × 3 2 256 56 × 56 × 256 

Up_samp3 2 × 2 1 — 112 × 112 × 256 

Concat_3 — — — 112 × 112 × 384 

Conv _3E 3 × 3 2 128 112 × 112 × 128 

Up_samp4 2 × 2 1 — 224 × 224 × 128 

Concat_4 — — — 224 × 224 × 192 

Conv _4E 3 × 3 2 64 224 × 224 × 64 

Conv_OUT 3 × 3 1 3 224 × 224 × 3 

Softmax — — — 224 × 224 × 3 
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are identified precisely. Overall F1 score is a metric 

that considers both OP and OR and it is a harmonic 

mean of OP and OR. The mathematical forms of the 

above metrics are mentioned in Eqs 11–15, 

respectively. The Number of Parameters (NoP) 

generated by the model is a total number of the 

learnable elements of all the convolution layers in 

CNN and its mathematical form is mentioned in Eqs 6 

& 8 for standard convolution and depth-wise 

separable convolution respectively. 
 

Accuracy (A) = 
(𝑂𝑇𝑃+𝑂𝑇𝑁)

(𝑂𝑇𝑃+𝑂𝑇𝑁+𝑂𝐹𝑃+𝑂𝐹𝑁)
            … (11) 

 

Error-rate (E) = − 𝑌𝑗 ∗ 𝑙𝑜𝑔(𝑃𝑗 )          … (12)  
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑂𝑃)  =
𝑂𝑇𝑃

𝑂𝑇𝑃+𝑂𝐹𝑃
              … (13) 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑂𝑅)  =
𝑂𝑇𝑃

𝑂𝑇𝑃+𝑂𝐹𝑁
                    … (14) 

Table 5 — Training parameters 

Parameter Values 

Batch size  5 

Steps per epoch   120 

Leaning rate 0.001 

Optimizer ADAM optimizer 

Loss function categorical cross_entropy 

 

𝑂𝑣𝑒𝑟𝑎𝑙 𝐹1 = 2 ×
𝑂𝑃  × 𝑂𝑅

𝑂𝑃+𝑂𝑅
           … (15) 

 

where, OTP is Overall True Positive, OTN is 

Overall True Negative, OFP is Overall False Positive, 

OFN is Overall False Negative, t is the total number 

of samples, Pj represents the j-th predicted output of 

the model, and Yj represents the corresponding j-th 

target value. 
 

Results and Discussion 
At first, the deep learning architectures SegNet 

based on
13

, U-Net based on
7
, Residual U-Net based 

on
19

, and proposed RRUSC (Reduced Residual  

U-Net using Standard Convolution) networks are 

implemented with a standard convolution technique. 

These models are trained using the training 

parameters mentioned in Table 5. The corresponding 

results of these models with the Standard convolution 

technique are recorded in Table 6. The metrics of the 

proposed architecture RRUSC are considerably good, 

achieving a segmentation accuracy of 96.14% at 

validation time and 95.37% at testing time, which is 

higher than others. The overall F1 score achieved by 

the proposed RRUSC is also good and better than 

other models except the Residual U-Net model, which 

are 97.30% and 97.29% at validation and testing time, 

respectively. But while considering the number of 

parameters of the RRUSC model, it is very huge i.e., 

5.52 Million even though it is lesser than other 

models. So, it is computationally very expensive since 

it is implemented using a standard convolution 

technique. 

To overcome this, all those architectures listed in 

Table 6 are implemented with depth-wise separable 

convolution (DSC) instead of standard convolution 

techniques. The corresponding results of the models 

with depth-wise separable convolution (DSC) are 

recorded in Table 7. The parameters comparison of 

standard convolution and DSC version of different 

architectures is visualized in Fig. 7. The DSC version 

of the proposed model, called RRUDC consumes 

0.655 million parameters only which was 88% lesser 

than the standard convolution version. The proposed 

Table 4 — The configuration of Residual U-Net architecture 

Layer Kernel 

size 

No. of 

layers 

No. of 

filters 

Output shape 

Conv_IP 3 × 3 1 64 224 × 224 × 64 

Conv _1C 3 × 3 2 64 224 × 224 × 64 

R_ConC1 — — — 224 × 224 × 64 

Down_sampl 2 × 2 1 — 112 × 112 × 64 

Conv _2C 3 × 3 2 128 112 × 112 × 128 

R_ConC2 — — — 112 × 112 × 128 

Down_sampl 2 × 2 1 — 56 × 56 × 128 

Conv _3C 3 × 3 2 256 56 × 56 × 256 

R_ConC3 — — — 56 × 56 × 256 

Down_sampl 2 × 2 1 — 28 × 28 × 256 

Conv _4C 3 × 3 1 512 28 × 28 × 512 

R_ConC4    28 × 28 × 512 

Down_sampl 2 × 2 1 — 14 × 14 × 512 

Conv _Mid 3 × 3 1 512 14 × 14 × 512 

Up_samp1 2 × 2 1 — 28 × 28 × 512 

Concat_1 — — — 28 × 28 × 1024 

Conv _1E 3 × 3 2 512 28 × 28 × 512 

R_ConE1 — — — 28 × 28 × 512 

Up_samp2 2 × 2 1 — 56 × 56 × 512 

Concat_2 — — — 56 × 56 × 768 

Conv _2E 3 × 3 2 256 56 × 56 × 256 

R_ConE2 — — — 56 × 56 × 256 

Up_samp3 2 × 2 1 — 112 × 112 × 256 

Concat_3 — — — 112 × 112 × 384 

Conv _3E 3 × 3 2 128 112 × 112 × 128 

R_ConE3 — — — 112 × 112 × 128 

Up_samp4 2 × 2 1 — 224 × 224 × 128 

Concat_4 — — — 224 × 224 × 192 

Conv _4E 3 × 3 2 64 224 × 224 × 64 

R_ConE4 — — — 224 × 224 × 64 

Conv_OUT 3 × 3 1 3 224 × 224 × 3 

Softmax — — — 224 × 224 × 3 
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RRUDC architecture’s accuracy and error- rate over 

the epochs during the training and validation phase 

respectively are shown in Figs 8 and 9.  

The proposed RRUDC achieves segmentation 

accuracy of 96.13% at validation and 95.40% at 

testing, Overall F1 Score (OF) of 97.10 at both 

validation and testing time. The drop in accuracy and 

OF values between the Stand convolution version 

and depth-wise convolution version of the proposed 

models are very negligible range when compared 

with parameter reduction. But the error-rate of the 

RRUDC is reduced when compared to RRUSC, 

which is 2.51% at validation and 6.42% at testing. 

The learning curves of accuracy and error- rate over 

the epochs for the DSC version of SegNet, U-Net, 

Residual U-Net, and RRUDC architecture are 

visualized in Figs 10 and 11 respectively. Hence, the 

RRUDC attains a better trade-off among the metrics 

of accuracy, error rate, and parameters consumption. 

The OP, OR, and OF values of RRUDC are 95.43%, 

98.83%, and 97.10% respectively. These are lesser 

than U-Net and Residual U-Net but their difference 

is insignificant. 

Table 6 — Comparison of architecture variants with standard convolution 

Architecture Variants 
NoP 

(in Millions) 

Validation Testing 

A 

(%) 

E 

(%) 

OP 

(%) 

OR    

(%) 

OF 

(%) 

A 

(%) 

E 

(%) 

OP 

(%) 

OR 

(%) 

OF 

(%) 

SegNet13 14.145 93.06 11.54 93.46 96.32 94.87 92.77 12.07 93.45 96.31 94.86 

U-Net7 12.552 95.06 4.14 95.62 99.05 97.30 95.41 8.09 95.62 99.05 97.30 

Residual U-Net19 12.556 95.78 5.62 95.59 99.22 97.37 95.21 10.07 95.58 99.22 97.36 

RRUSC  5.520 96.14 2.89 95.57 99.09 97.30 95.37 7.45 95.57 99.08 97.29 

NoP = No of Parameters, A = Accuracy, E = Error rate, OP = Overall precision, OR = Overall, OF = Overall F1 score 

Table 7— Comparison of architecture variants with DSC 

Architecture Variants 
NoP 

(in Millions) 

Validation Testing 

A 

(%) 

E 

(%) 

OP 

(%) 

OR    

(%) 

OF 

(%) 

A 

(%) 

E 

(%) 

OP    

(%) 

OR    

(%) 

OF 

(%) 

SegNet-DSC 1.639 92.45 14.74 93.68 96.73 95.18 92.29 14.88 93.67 96.72 95.17 

U-Net- DSC 1.450 95.59 6.49 95.69 99.35 97.49 95.23 8.84 94.77 98.60 96.55 

Residual U-Net DSC 1.453 95.6 5.20 95.71 99.33 97.49 95.18 8.39 95.70 99.34 97.48 

RRUDC 0.655 96.13 2.51 95.43 98.83 97.10 95.40 6.42 95.43 98.82 97.10 

NoP = No. of parameters, A = Accuracy, E = Error rate, OP = Overall precision, OR = Overall recall, OF = Overall F1 score 
 

 
 

Fig. 7 — Parameters comparison chart between Standard 

Convolution and DSC 
 

 
 

Fig. 8 — Accuracy in RRUDC architecture over the epochs 
 

 
 

Fig. 9 — Error-rate in RRUDC architecture over the epochs 
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Fig. 10 — Validation accuracy comparison over the epochs 

 

 
 

Fig. 11 — Error-rate comparison over the epochs 
 

The sample segmentation images of SegNet_DSC, 

U-Net_DSC, Residual U-Net_DSC, and proposed 

RRUDC are shown in Fig. 1. In which, the RRUDC 

segmentation result (Fig. 1f) extracts the corner 

features of crop and weed precisely. For further 

reference, proposed RRUDC segmentation images of 

a few more crop-field images from the CWFID 

dataset are shown in Fig. 2. This shows that RRUDC 

architecture outperformed other architectures in 

segmentation. After achieving substantial accuracy, 

the trained model is exposed to the pruning process. 

The scarsity rate is applied from 50% to 90% in the 

pruning schedule. After the pruning process, dense 

connections between the channels become sparse. 

Hence, the model size is reduced from 7.83 MB to 

2.34 MB, since the insignificant weight values are 

removed from the tensor. The model size and its 

metrics are recorded in Table 8 and a comparison of 

the architecture’s model size before and after pruning 

is visualized in Fig. 12.  

It shows that the pruned RRUDC model achieved a 

better model size reduction with a negligible drop in 

accuracy and a negligible increase in error rate. Based 

on the above experiments, the proposed RRUDC 

architecture outperformed well on the segmentation 

task when compared to SegNet, U-Net, and Residual 

U-Net. It achieved better accuracy and lesser error-

rate-based, with a lesser number of parameters and 

reduced model size. 
 

Comparison with Existing work 

As part of the crop-weed segmentation task on the 

CWFID dataset, Hashemi-Beni et al.
27

employed 

FCN-8s, FCN-16s, FCN-32s, and U-Net deep 

learning models, and McCool et al.
28

 developed 

DeepLab v3+ and AgNet deep learning models on 

their work. The performance comparison of the 

proposed RRUDC model with the existing work is 

presented in Table 9. From Table 9, the proposed 

Pruned RRUDC achieved a better segmentation 

accuracy of 96.06%, when compared to that of  

the existing models. In terms of the Number of 

Parameters (NoP), AgNet
28

 generated a very less 

Number of Parameters, 0.25 Million, when compared 

to the other models. But on the other side, the 

parameter reduction was affected its segmentation 

accuracy, which is dropped to 88.9%. Even the NoP 

value of the proposed RRUDC is a little higher (0.655 

 
 

Fig. 12 — Comparison of model size RRUSC Vs RRUDC before 

and after pruning 
 

Table 8 — Comparison of pruned model and  standard model 

Model Model 

Size 
(in MB) 

Validation Testing 

A 

(%) 

E 

(%) 

A 

(%) 

E 

(%) 

RRUSC without 

Pruning 

63.46 96.14 2.89 95.37 7.45 

RRUDC without 

Pruning 

7.83 96.13 2.51 95.40 6.42 

RRUDC with 

Pruning 

2.34 96.06 2.78 95.44 7.12 

A = Accuracy, E = Error rate 
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Million) than AgNet (0.25 Million), it significantly 

improved the segmentation accuracy of crop-weed 

segmentation. Further, the proposed RRUDC model is 

pruned for model size reduction. Thus Pruned 

RRUDC model is come up with a size of 2.34 MB, 

which can be convenient to deploy on resource-

constrained devices used by the farmers. 
 

Conclusions 

In this paper, we proposed a Reduced Residual  

U-Net using Depth-wise separable Convolution 

(RRUDC) network for crop-weed segmentation. This 

is Encoder-Decoder based architecture. Residual 

Depth-wise separable Convolution Block (RDCB) 

was introduced as a functional unit in which standard 

convolution technique is replaced with Depth-wise 

Separable Convolution technique (DSC). With this, 

the number of parameters is reduced to 12% of 

parameters used with the standard convolution 

technique. A dropout layer is added before every 

RDCB unit which prevents the model from 

overfitting. Both residual connection and dropout 

layers help to reduce the segmentation error-rate. 

The concatenation unit present in this architecture 

is used to integrate the location information with 

contextual information to achieve the precise 

segmentation of crops and weeds. Further using the 

pruning technique, the model size is compressed to 

30% when compared to the original network without 

significant degradation of performance. Thus, our 

proposed deep learning-based RRUDC model 

outperformed well regarding segmentation results 

with good accuracy and less error-rate, with reduced 

model size, 2.34 MB, which is being more convenient 

to build a computer vision application that can be 

easily deployed on resource-constrained portable 

devices in agricultural land. 

Future Work 

In future work, we shall be planning to build a deep 

learning-based multi-crop weed segmentation model 

for segmenting weeds present in the different types of 

crops in the agricultural land. With this multi-crop 

weed detection model, we shall be planning to 

develop a simple and convenient mobile application 

to help the farmers to identify the presence of weeds 

on their agricultural land. 
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