
Journal of Scientific & Industrial Research
Vol. 80, December 2021, pp. 1078-1090

Formal Verification of Receiver Initiated Load Distribution Protocol with Fault
Tolerance and Recovery using Event-B

Pooja Yadav1*, Raghuraj Suryavanshi2 and Divakar Yadav3

1Dr A P J Abdul Kalam Technical University, Lucknow 226 031, India
2Pranveer Singh Institute of Technology, Kanpur 209 305, India

3Institute of Engineering and Technology Lucknow 226 021, India

Received 05 May 2021; revised 12 September 2021; accepted 02 December 2021

Load distribution is a process that involves the allocation of tasks to various nodes in the distributed system in such a
manner that overall resource utilization is maximized, and overall response time is minimized. This paper presents a formal
model for verification of receiver-initiated load balancing and fault tolerance protocol with recovery in distributed systems
using the eclipse-based Event-B platform called Rodin. Here, the receiver-initiated load balancing approach is demonstrated
along with tolerance of node failure and recovery. In this approach, an underloaded node (receiver) initiates the process of
load transfer from an overloaded node (sender). The underloaded node broadcasts a request message to obtain load from the
overloaded nodes. The overloaded nodes reply with their load value. The underloaded node then selects the optimal
overloaded node for load transfer. The chances of node failure are minimized by reducing the number of overloaded nodes.
The process of recovery from failure is also shown in the proposed model. Formal methods are used to mathematically
verify the critical properties of the system by developing a model based on its specifications. Our objective is to verify and
validate the model for correctness through discharge of proof obligations using Event-B. Event-B is a formal method which
is used for verification of a model based on distributed systems. The proof obligations generated by the model are
discharged which ensures the correctness of our model.

Keywords: Distributed systems, Formal methods, Load balancing, Proof obligations, Rodin, Verification

Introduction
Distributed systems are a group of autonomous

systems connected by a communication network.
These autonomous systems interact through message
passing. They do not have a common global clock or a
shared memory. Due to complexity in the designs of
distributed systems, the precise understanding and
verification of distributed algorithms becomes difficult.
A formal specification of distributed algorithms using
mathematical techniques helps in understanding their
precise behavior. This paper presents a formal
development approach for receiver-initiated load
balancing algorithm with fault tolerance and recovery
using Event-B. Event-B is an event-based approach for
formal development and verification of models based
on distributed systems. The users submit their tasks to
individual autonomous systems or nodes for
processing. Such random submission of tasks leads to
unequal load distribution at various nodes. Some of the
nodes become heavily loaded which leads to

performance degradation while others remain idle or
underutilized. Load balancing1 is the process of
allocating tasks to various nodes in the system in such a
manner that overall resource utilization is maximized,
and overall response time is minimized. In distributed
systems, load distribution algorithms can be classified
as sender initiated or receiver initiated.2,3 In sender-
initiated algorithm2 an overloaded node or sender
identifies an underloaded node or receiver to share its
load while in receiver-initiated algorithm2,4 an
underloaded node or receiver identifies an overloaded
node or sender to acquire its load.

In our receiver-initiated load balancing model, the
notion of threshold value is considered which
indicates optimal load value of a node. Nodes having
load value above the threshold value are considered as
overloaded nodes while nodes having load value
below the threshold value are considered as
underloaded nodes. The uniqueness and novelty of the
presented algorithm lies in the following factions.

 In order to transfer load from maximum number
of overloaded nodes, the node having minimum

——————
*Author for Correspondence
E-mail: poojayadav255@gmail.com

YADAV et al.: FORMAL VERIFICATION OF LOAD DISTRIBUTION PROTOCOL

1079

load above threshold value (i.e., minimum
overloaded node) will be selected from directory.
If the overloaded node having maximum load
above threshold value (i.e, maximum overloaded
node) is selected then lesser number of
overloaded nodes will be catered to by the
algorithm. However, as the load balancing
process continues as per the algorithm the most
overloaded node will also be addressed.
Therefore, algorithm is optimized to maximize
the number of nodes with optimum load i.e., load
value nearing the threshold value.

 Along with load balancing, the notion of fault
tolerance3 and recovery5 have also been added to
the algorithm. In case the receiver or underloaded
node fails or does not respond to messages, we
choose another underloaded node from the set of
underloaded nodes for receiving the load.

 Each step of the algorithm is formalized with the
help of events comprising of guards and actions in
order to verify the correctness of the model.

Related Work

There has been extensive research in the field of
modelling techniques using formal verification and
validation methods with respect to distributed
systems, distributed databases, distributed
transactions, checkpointing, fault tolerance etc.
Suryavanshi & Yadav6 have modelled and verified
lazy replication in distributed database systems using
formal techniques with the help of Event-B using
Rodin platform. Chandra et al.7 highlight the
formal verification of distributed checkpointing,
distinguishing the local and global checkpoints and
marking the transactions which took place before the
global checkpoint which may further be used for the
purpose of recovery. The checkpointing algorithm is
specified through an Event-B model using Rodin
platform and its correctness is checked through
discharge of proof obligations. Elnozahy et al.5 gives
a detailed survey of various rollback recovery
protocols in message passing systems. Rigorous
design of fault tolerant distributed transactions8 has
been demonstrated and verified with the help of
Event-B using Click’n’Prove platform. Data is
replicated across multiple sites in this distributed
database and replica control measures are exercised to
maintain the consistency of the distributed database.
Similarly, atomicity of transactions in a cash based
digital payment system is verified and validated by

specifying the system mathematically using Event-B
in Rodin platform through a series of refinement steps
and discharge of proof obligations by Chandra &
Yadav.9 Lahbib et al.10 have used Event B for the
verification of safety, accuracy and correctness of
smart contractions developed using block chain
technology. The development of smart contractions is
a well-known application of block chain technology
and is used for various purposes such industry, trade
and commerce, healthcare etc. Lahouij et al.11 relate
to the development of a formal model for the
integration of various components of cloud services
provided by different service providers and having
different specifications. The model is verified to
check the correctness of the “Cloud composite
services”. Karmakar et al.12 demonstrate the
formulization and validation of a protocol developed
for conserving ground water using the Event B
platform called Rodin. Event-B is used for the
verification of fault tolerance mechanism in cyber
physical system by Ali et al.13 Le et al.14 have devised
a method for converting database triggers into Event-
B constructs and verify their correctness by detecting
the presence of infinite loops and preservation of data
constraint properties. However, the use of formal
methods for the development and verification of
distributed load balancing algorithms is relatively
unexplored. Formal specification of sender-initiated
load balancing mechanism in distributed systems
having causal order message delivery is specified by
Yadav et al.15 Formal verification of split point load
balancing algorithm is presented by Shukla et al.16
Here the overloaded node or sender initiates the
process of load transfer. The excess load from the
overloaded node is not transferred to a single
underloaded node but split among two or more
underloaded nodes. In this paper, we have modelled
the receiver-initiated load balancing algorithm with
fault tolerance property for distributed systems using
Event-B. It produces proof obligations and all of them
are discharged to check the correctness of the system.

Event-B: A Formal Technique
A formal technique known as Event-B is used for

rigorous designing of distributed algorithms in a
stepwise manner using mathematical expressions. The
algorithm is first expressed as an abstraction model
showcasing its basic functionality and then further
refinements are modelled by adding finer details and
features of the algorithm. The discharge of proof
obligations verifies the correctness of the system

J SCI IND RES VOL 80 DECEMBER 2021

1080

model. Using this technique first the abstraction
problem is defined, and then further details and
solutions are introduced in the refinement steps to
obtain more concrete specifications leading to
verification of the validity of the proposed solutions.
The static properties of Event-B models are defined
by invariants and the dynamic properties are defined
by events. Activation of an event8 when its guards
become valid modifies a list of state variables. Each
refinement step strengthens the guards of events.

Contexts and machines are the two major
components of an Event-B model.17,18 Contexts,
which consist of constants, sets and axioms and form
the static part of the model.19 Variables define the
state of the machine. Invariants are the constraints
which are applied to the machine’s variables. When
state change in a machine occurs during execution,
the invariants of the machine which define the
properties of those variables must not be violated. All
the invariants must be satisfied by each state of the
machine.20 If there is a violation of invariants, it
means the model is not working correctly as per the
specifications. An event comprises of guards and
actions. The guards represent the necessary conditions
for the events to occur. When all the guards of an
event become true, its list of actions is enabled. An

action assigns of new values to variables. Prove
obligations can be discharged through interaction or
by using automatic prover.21 The detailed syntax and
description of Event-B notations are given by
Abrial.22

Some of the Event-B tools are B-Toolkit23,
Rodin21,24, Atelier B25 Click’n’Prove.26 Rodin
platform21 is used for this research work. Metayer21
states that “Rodin platform is an open extensible tool
for specification and verification of Event-B models”.
Modeling elements such as variables, invariants,
events and components like context and machines are
available in Rodin. Rodin provides a platform for
refinement checking and consistency checking
through generation and discharge of proof obligations.

System Model

The receiver-initiated algorithm ensures load
balancing in a synchronized manner. The
communication network in the system is assumed to
be reliable. In this algorithm, the process of load
balancing and redistribution is initiated by the
receiver which is an underloaded node as shown in
Fig. 1. Each node maintains its status as underloaded
or overloaded which is defined by a threshold value.
If the load value of the node is less than or equal to

Fig. 1 — Proposed model for receiver-initiated load balancing algorithm

YADAV et al.: FORMAL VERIFICATION OF LOAD DISTRIBUTION PROTOCOL

1081

the threshold value, the node is declared as
“underloaded node”, otherwise the category of the
node is “overloaded node”. The receiver or
underloaded node broadcasts the request message to
all other nodes. After receiving the request message,
only the overloaded nodes (senders) reply with a
message containing their load value. The underloaded
node receives the reply messages with load values
from all overloaded nodes and selects the optimal
overloaded node for load transfer. The optimal
overloaded node is the minimal overloaded node
which has the least load value above threshold. This
approach is chosen to balance the load at maximum
possible overloaded nodes. The underloaded node
then informs the minimal or optimal overloaded node
that it has been selected for load transfer and the
activity of load transfer takes place.A brief informal
description of the events is given below:

a) Identify the Underloaded and Overloaded Nodes: When
a new task is submitted at any process, the load
value of that process is incremented. The node
compares this load value with the threshold value.
A node with the load value greater than the
threshold value is declared as “overloaded node”,
otherwise the category of the node is
“underloaded node”.

b) Underloaded (Receiver) Node Broadcasts the Request
Message: If the load value of a node is less than the
threshold value i.e., it is an underloaded node then
a request message is broadcast to find an
overloaded node for load transfer. Since the
receiver of load or underloaded node initiates the
algorithm, it is called the receiver-initiated load
balancing algorithm.

c) Delivery of Request Message and Reply to the
Underloaded (Receiver) Node: After the request is
delivered to all the nodes, they will send a reply
message to the underloaded node. The reply
message contains node id and its corresponding
load value.

d) Receiving the Reply Message and Updating the
Directory: The underloaded node or receiver
receives the reply message from other nodes and
updates its directory with each node and its
corresponding load value.

e) Find the Least Overloaded Node for Transfer of Load:
Once all the nodes have sent their load value, we
find the least overloaded node i.e., the node
whose load value is closest to the threshold value
(only slightly greater than the threshold value).

The underloaded node sends a message to the
least overloaded node for transferring the load.
This approach is chosen to balance the load at
maximum possible overloaded nodes.

f) Receiving the message for load transfer: The least
overloaded node receives the load transfer
message and prepares for transferring the load.

g) Checking the Status of the Underloaded Node: After
receiving the load transfer message the least
overloaded node checks the status of underloaded or
receiver node i.e. “ready to receive” or “failed”.

h) Transfer of Load from the Overloaded Node to the
Underloaded Node: In order to transfer load, status
of underloaded node must be “ready to receive”.
Further, we compute the excess load value at the
overloaded node (i.e., load value of the
overloaded node - threshold value) which must be
transferred to the underloaded node. It is ensured
that the total load value at the receiver node does
not exceed the threshold value after load transfer.
The received load value is added to the already
existing load value of the underloaded node and
the transfer status is set to “completed”.

i) Failure of Underloaded Node: If the status of the
underloaded node is “failed”, we choose another
underloaded node from the set of underloaded
nodes which is different from the previous one.

j) Node Failure/Fault Tolerance: After choosing another
underloaded node whose status is “ready to
receive”, we transfer the load as per the policy
discussed above. The fault is tolerated in this
manner, and the status of load transfer is set as
“completed”.

Formal Modelling of Receiver Initiated Load
Distribution Protocol

The Event-B model for receiver-initiated load
balancing and fault tolerance algorithm contains a
context and a machine having several events.
Every event consists of guards and actions. The
invariants define the properties of the variables that
should not be violated,13 when the state of the
machine changes during execution. In this Event-B
model, MESSAGE and NODE are declared as carrier
sets. The sets status, m_status, type, load_progress
and node_status are defined as enumerated sets. The
machine part of the model, justifies the variables,
invariants, and events whose detailed discussion is as
follows:

Invariant 1: sender ∈ MESSAGE ↦NODE
Invariant2: deliver ∈ NODE ↔ MESSAGE
Invariant3: node_status∈ NODE → status

J SCI IND RES VOL 80 DECEMBER 2021

1082

Invariant4: load_value∈ NODE → N
Invariant 5: reply_msg_send∈(MESSAGE↔ MESSAGE)

↦NODE
Invariant6: reply_msg_rcd∈ NODE ↔ (MESSAGE ↔

MESSAGE)
Invariant7: msg_send⊆ MESSAGE
Invariant8: dir∈ NODE ↔ (MESSAGE ↦N)
Invariant1 defines the variable sender is as a partial

function from the set MESSAGE to the set NODE. It
models the sending of message m by node n.
Invariant2 defines the variable deliver as the relation
(mm ↦nn) ∈ deliver which represents the successful
delivery of request message mm at the overloaded
node nn. Invariant3 identifies the status of the node as
defined in the context part. The status of the node is
either overloaded or underloaded. In invariant4, the
variable load_value is defined as the value of load at
each node which must be a natural number. In
invariant5, the variable reply_msg_send is
represented as a mapping function ({mm ↦ m})
↦nn∈reply_msg_send. The reply message m is sent in
context to the request message mm by the overloaded
node nn. In invariant6, the variable reply_msg_rcd
shows the receiving of the reply message by the
underloaded node and is represented by the mapping
function n ↦ ({mm ↦ m}) ∈reply_msg_rcd. The reply
message m, sent by the overloaded node nn is
received by underloaded node n which was sent as a
reply to the request message mm. Invariant7 defines
the variable msg_send as a subset of the set
MESSAGE, which identifies the messages sent by a
node. In invariant8, the variable dir represents the
directory which contains the node ID and their
corresponding load value, which is a natural number.
Here, the mapping between the node and the message
is also represented.

Invariant9:message_type∈msg_send → type
Invariant10:req_nodes⊆ NODE
Invariant11:request_queue∈ NODE ↔ (MESSAGE ↦NODE)
Invariant12:message_node_value∈ MESSAGE ↦N
Invariant13:reply_node∈ NODE ↔ (MESSAGE ↦ N)
Invariant14:transfer_load∈ NODE → load_progress
Invariant15:message_status∈ MESSAGE → m_status
Invariant16:n_status∈ NODE → node_status
Invariant17:load_val⊆ N
Invariant18:min_load_msg⊆ MESSAGE
Invariant19: load ∈ MESSAGE ↦N
Invariant20:underloaded_nodes⊆ NODE
Invariant21:load_balancer⊆ NODE

In invariant 9, the variable message_type
represents the category of a message. A message can
be categorized as either “request”, “reply” or
“minimum load”. Invariant10 defines the variable

req_nodes as a subset of the set NODE. In
invariant11, the variable request_queue is represented
by the set of relations between the set NODE and
request messages sent by the corresponding nodes.
A mapping represented as n ↦ {mm ↦ n}}
∈request_queue indicates that the request queue of
node n has a request message mm sent by node n. In
invariant12, the variable message_node_value
specifies the mapping of a message with the load
value of its sender, which is a natural number.
Invariant13 defines the variable reply_node which
represents those nodes that reply to the corresponding
request message. In invariant14, The variable
transfer_load shows the status of load transfer from
the overloaded node to the underloaded node. The
progress of load transfer can be categorized as “ready
to send”, “completed” or “failed”. In invariant15, the
variable message_status is defined as the status of the
delivery of the message which can be “pending” or
“successful”. In invariant16, the variable n_status
shows the status of the node which can be either
“active” or “expired”. As per invariant17, the variable
load_val is a strict subset of the set of natural
numbers N. Invariant18 defines the variable
min_load_msg is a subset of the set MESSAGE. This
message contains the node ID of the minimum
overloaded node. Variable load belongs to the set of
natural numbers N as per invariant19. Invariant20
defines the set underloaded_nodes as a subset of the
set NODE. It contains the set of underloaded nodes.
Invariant21 defines the set load_balancer as a set of
nodes which belong to the set underloaded_nodes and
participate in load balancing. It is a subset of the set
NODE. Each step of the receiver-initiated load
balancing protocol is modelled as events comprising
of guards and actions as described below.

Event 1: Submission of Request: The event Request
submission is given below. This event models the
submission of a new request at any node n. The load
value of node n is represented by the variable
load_value(n). When a task is submitted at a node,
then the increase in the load_value of the node is
modelled as an increment by one (action1).

EVENT Request submission
ANY n
WHERE
guard1: n ∈ NODE
THEN
action1:load_value(n) := load_value(n) + 1
Events 2 & 3: Decision of Node Status: The event

Underload is given below. In this event, the load

YADAV et al.: FORMAL VERIFICATION OF LOAD DISTRIBUTION PROTOCOL

1083

value of node n is compared with the threshold value
which is a constant. If the load value is less than or
equal to the threshold value (guard4) the status of the
node is set as “underloaded” (action1).

The event Overload is also given below. The load
value of anode is compared with the threshold value.
If it exceeds the threshold value (guard4), then the
status of the node is declared as “overloaded”
(action1).

EVENTUnderload
ANY n
WHERE
guard1: n ∈ NODE
guard2: n ∈dom(load_value)
guard3:load_value(n) ∈ N
guard4:load_value(n) ≤ threshold
THEN
action1:node_status(n) := underloaded
EVENTOverload
ANY n
WHERE
guard1: n ∈ NODE
guard2: n ∈	dom(load_value)
guard3: load_value(n) ∈ N
guard4: load_value(n) > threshold
THEN
action1:node_status(n) := overloaded
Event 4: Broadcast of Request Message from the

Underloaded Node: In a receiver-initiated algorithm, the
receiver node or the underloaded node broadcasts the
request message to find the overloaded node. The
event Underloaded node broadcast is modelled as
shown below. Node n belongs to the set NODE
(guard1). The status of node n is “underloaded”
(guard3). Message mm has not yet been sent (guard4)
and message mm is not yet in the domain of sender
node is ensured (guard5). Message mm does not
belong to the request queue of the underloaded node n
(guard6) and node n is not in the set req_nodes
(guard7).

EVENTBroadcast by underloaded node
ANY n, mm
WHERE
guard1: n ∈ NODE
guard2: mm ∈ MESSAGE
guard3:node_status(n) = underloaded
guard4: mm ∉msg_send
guard5: mm ∉dom(sender)
guard6: mm ↦n ∉request_queue[n]
guard7: n ∉	req_nodes
In the action part, action1 ensures that message mm

is sent by node n. Sending of message mm is ensured
by action3. The type of message mm is “request”
(action4). Node n belongs to the set req_nodes
(action5).

action1:sender := sender ∪ {mm ↦ n}
action2:request_queue := request_queue∪ {n ↦	{mm ↦ n}}
action3:msg_send := msg_send∪ {mm}
action4:message_type(mm) := request
action5:req_nodes := req_nodes∪ n
Event 5: Delivery of Request Message: The delivery of

the request message which was broadcast by the
underloaded node n is shown below. Node n is the
requesting node. The status of node n is
“underloaded” (guard3). Message mm is a request
message broadcast by the underloaded node n
(guard5). Message mm which is sent by node n, does
not belong to the request queue of the overloaded
node nn(guard6). The type of message mm is
“request” (guard7). The status of the node nn is
overloaded (guard9) and message mm is not delivered
at node nn (guard10).

EVENTDelivery of request message
ANY mm, n, nn
WHERE
guard1: n ∈req_nodes
guard2: n ∈underloaded_nodes
guard3:node_status(n) = underloaded
guard4: mm ∈msg_send
guard5: (mm ↦n) ∈ sender
guard6: (mm ↦ n) ∉request_queue[nn]
guard7:message_type(mm) = request
guard8:nn∈ NODE
guard9:node_status(nn) = overloaded
guard10: (nn↦ mm) ∉ deliver
If all the guards are valid, then message mm is

delivered at node nn (action1). Delivery of message
mm is shown in the request queue of the overloaded
node nn (action2).

action1:deliver := deliver ∪ {nn↦ mm}
action2:request_queue := request queue ∪ {nn↦ {mm ↦ n}}
Event 6: Reply from Overloaded Node to the Underloaded

Node: All the overloaded nodes reply to the request
message broadcast by the underloaded node n with
“ready to transfer load” message. The event Reply
from overloaded node is shown below.

Message mm belongs to msg_send and msg_send is
a subset of the set MESSAGE. It contains those
messages which are to be sent by the node either in
the form of request or reply (guard3). Status of node
n and nn is “underloaded” and “overloaded”
respectively (guard4 & guard5). We have
successfully delivered the message mm in node nn
(guard7). The overloaded nodes have load values
which are natural numbers (guard8 & guard9).
Message m does not yet belong to the domain of
msg_send (guard12), the type of message is not yet
decided (guard13) and message m does not yet belong

J SCI IND RES VOL 80 DECEMBER 2021

1084

to the domain of reply_msg_send (guard14). Message
m does not belong to the domain of the sender
(guard15). Reply message m with load value ld does
not belong to the set load (guard16).

EVENT Reply from overloaded node
ANY n, mm, nn, m, ld
WHERE
guard1: n ∈ NODE
guard2:nn∈ NODE
guard3: mm ∈msg_send
guard4:node_status(n) = underloaded
guard5: nod_ status(nn) = overloaded
guard6:message_type(mm) = request
guard7: (nn↦ mm) ∈ deliver
guard8:ld = load_value(nn) − threshold
guard9:ld∈ N
guard10: (mm ↦ n) ∈ sender
guard11: m ∈ MESSAGE
guard12: m ∉msg_send
guard13: m ∉dom(message_type)
guard14: mm ↦ m ∉dom(reply_msg_send)
guard15: m ∉dom(sender)
guard16: (m ↦ld) ∉ load
In the action module, action1 shows that message

m belongs to the domain of msg_send and message
type is a “reply” (action2). Reply message m is sent
by node nn successfully (action3). The load value of
node nn is sent with reply message m and the variable
message_node_value is updated successfully
(action4). Message m is sent from overloaded node nn
to underloaded node n (action5). Message m with load
value ld now belongs to the set load (action6) and
node n which is an underloaded node is the
load_balancer (action7).

action1 : msg_send := msg_send ∪{m}
action2 : message_type(m) := reply
action3 : reply_msg_send := reply_msg_send ∪ {(mm ↦ m) ↦ nn}
action4:message_node_value := message_node_value ∪ (m ↦ ld)
action5 : sender := sender ∪ (m ↦ nn)
action6 : load := load ∪ (m ↦ ld)
action7 : load_balancer := {n}
Event 7: Receiving of Reply Message: Reply message is

sent by overloaded nodes to the underloaded node.
We ensure that only overloaded nodes participate in
the load transfer activity, otherwise our system will
remain busy unnecessarily and the network traffic
congestion will increase.

In the event given below, node n is a
load_balancer and node nn belongs to req_nodes
(guard1 & 2) respectively. Message mm is a request
message is ensured by guard4. Status of node nn and
n is “overloaded” and “underloaded” respectively
(guard5 & 6). The overloaded node nn sends the reply
message m to node n (guard10). As per the request
queue, message mm is sent by the underloaded node n

(guard11). The variable ld defines the load value at a
node and it is a natural number (guard12 & 13).
Message m is not yet delivered to node n (guard15).
Message m is not present in the request queue of node
nn (guard14). The directory is not updated with the
load value ld and corresponding overloaded node nn
is ensured by guard17. The variable reply_node[{nn}]
is not updated with the reply message m and load
variable ld (guard18).

EVENTReceive reply message
ANY n, mm, nn, m, ld
WHERE
guard1: {n} = load_balancer
guard2:nn∈req_nodes
guard3: mm ∈msg_send
guard4:message_type(mm) = request
guard5:node_status(n) = underloaded
guard6:node_status(nn) = overloaded
guard7: (mm ↦n) ∈ sender
guard8: m ∈msg_send
guard9:message_type(m) = reply
guard10: (mm ↦ m) ↦nn∈reply_msg_send
guard11: (mm ↦ n) ∈request_queue[n]
guard12:ld = load_value(nn) − threshold
guard13:ld∈ N
guard14: (m ↦nn) ∉request_queue[n]
guard15: (n ↦ m) ∉ deliver
guard16: (m ↦ld) ∈ load
guard17: (m ↦ld) ∉dir[n]
guard18: (m ↦ld) ∉reply_node[nn]
In the action part, action1 represents the delivery of

message m at node n successfully. The variable
reply_msg_rcd is updated with the reply message m
corresponding to the request message mm at node n
(action2). The directory is updated with the message
and the load values (action3). The request queue of
node n is updated with the reply message m (action4).
The variable reply_node[nn] also has an entry of
message m and load value ld in its queue (action5).
The variable load_val is the set of load values
received from the overloaded nodes. The load value ld
received through message m is added to the set
load_val (action6).

action1:deliver := deliver ∪ {n ↦m}
action2:reply_msg_rcd := reply_msg_rcd∪ {n ↦ (mm ↦ m)}
action3:dir := dir∪ {n ↦ (m ↦ld)}
action4:request_queue := request_queue∪ {n ↦ (m ↦nn)}
action5:reply_node := reply_node∪ {nn↦ (m ↦ld)}
action6:load_val := load_val∪ {ld}
Event 8: Finding the Minimum Load: After receiving

the load value ld from the overloaded nodes, we
choose the node with minimum load value from
among the replying nodes. The find minimum load
event is demonstrated below.

YADAV et al.: FORMAL VERIFICATION OF LOAD DISTRIBUTION PROTOCOL

1085

Node nn is in the set req_nodes, node n is the
load_balancer (guard1& 2) and message mm belongs
to the msg_send list is ensured by guard3. The type of
message mm is “request” and the status of node n and
node nn is “underloaded” and “overloaded”
respectively (guard5 & 6). The type of message m is
“reply” (guard7 & 8). Reply message is received by
node n which was sent by node nn in the form of
message m corresponding to the request message mm
(guard9). The minimum load must be a natural
number (guard10). The variable ld belongs to the set
load_val and we compare the load values with each
other in the set load_val. We take one load value and
compare it with each value in the set, if none of the
load value is less than the selected load value then we
send the load in the set min_load (guard13, 14 & 15).
Node nn sends the reply message m with min_load
value towards the underloaded nodes is ensured by
the guard (guard16). In guard 17, we consider all the
nodes which are overloaded nk with reply message mk
corresponding to the request message mm and the
load value of every node is received. This implies that
all the overloaded nodes have replied to the request
message broadcast by the underloaded node. Message
ml is not in the domain of node nn and the reply of
min_load message is not yet sent (guard18 &19).

EVENTFind minimum overloaded node
ANY n, nn, m, mm, ld, min load, ml
WHERE
guard1: {n} = load_balancer
guard2:nn∈req_nodes
guard3: mm ∈msg_send
guard4:message_type(mm) = request
guard5:node_status(n) = underloaded
guard6:node_status(nn) = overloaded
guard7: m ∈msg_send
guard8:message_type(m) = reply
guard9: (n ↦ (mm ↦ m)) ∈reply_msg_rcd
guard10:min_load∈ N
guard11:ld∈load_val
guard12: (n ↦ (m ↦ld)) ∈dir
guard13:∀l · (l ∈load_val) ⇒min_load ≤ l
guard14:min_load = min(load_val∪ {0})
guard15:min_load∈load_val
guard16: (nn↦ (m ↦min_load)) ∈reply_node
guard17:∀nk, mk, ld1 · (nk∈ NODE ∧node_status(nk) =

overloaded ∧mk∈ MESSAGE ∧mk∈dom(message_type)
∧message_type(mk) = reply ∧ ld1 ∈load_val⇒ (nk↦ (mk↦ ld1))
∈reply_node)

guard18: ml ∉msg_send
guard19: (m ↦ ml) ∉dom(reply_msg_send)
If all the guards are valid, then the actions should

be implemented. Message type of ml is “minimum

load” (action1). Reply message with minimum load
ml is sent by node n in response to the message m
from node nn (action2). Message ml is now in the set
msg_send (action3).

action1:message_type(ml) := minimum_load
action2:reply_msg_send := reply_msg_send∪ ((m ↦ ml) ↦nn)
action3:msg_send := msg_send∪ {ml}

Event 9: Receiving of Minimum Load Message: When the
load value of all the overloaded nodes has reached the
underloaded node, then the minimum load value is
selected from it. Then a message is sent to the
minimum overloaded node. When this message of the
minimum load is received, the minimum overloaded
node is ready to transfer the load.

The event given below shows the receiving of
minimum load message ml (guard10). The message
type of ml is “minimum_load” (guard11). The
variable reply_msg_send sets the message ml
corresponding to the message m in node nn
(guard12). The reply message ml has not yet been
received by the node nn (guard13).

EVENTReceive minimum load message
ANY m, mm, ml, nn, n
WHERE
guard1: {n} = load_balancer
guard2:nn∈ NODE
guard3: mm ∈msg_send
guard4:message_type(mm) = request
guard5: m ∈msg_send
guard6:message_type(m) = reply
guard7:node_status(n) = underloaded
guard8:node_status(nn) = overloaded
guard9: ml ∈min_load_msg
guard10: ml ∈dom(message_type)
guard11:message_type(ml) = minimum_load
guard12: ((m ↦ ml) ↦nn) ∈reply_msg_send
guard13: (nn↦ (m ↦ ml)) ∉reply_msg_rcd
Finally, the reply message is received successfully

at the overloaded node which has the minimum load
value (action1).

action1:reply_msg_rcd := reply_msg_rcd∪ (nn↦ (m ↦ ml))
Event 10: Checking the Status of the Underloaded Node:

Status of an underloaded node is checked by the
overloaded node. The underloaded nodes may be in
“active” or “expired” state. The overloaded node
sends the “ready to send” message to the underloaded
node. If the underloaded node is “active” then this
“ready to send” message is further processed. If the
underloaded node is in an expired state, then
overloaded node converts the transfer_load(nn) status
from “ready to send” to “failed”.

In the event given below, node n is the
load_balancer, n is an underloaded node and n_status

J SCI IND RES VOL 80 DECEMBER 2021

1086

of node n is “active” is ensured by the guards
(guard1,2 &3). At a time only one node is the
load_balancer. Node nn is an overloaded node and
exists in the domain of transfer_load of node nn. The
overloaded node nn is not in “ready to send” state is
ensured by the guards (guard5, 6 &7).

EVENTCheck status of underloaded node
ANY n, nn
WHERE
guard1: {n} = load_balancer
guard2:n_status(n) = active
guard3:node_status(n) = underloaded
guard4:nn∈ NODE
guard5:node_status(nn) = overloaded
guard6:nn∈dom(transfer_load)
guard7:transfer_load(nn) ≠ ready_to_send
If all the guards are true, then the transfer_load of

node nn is in the “ready to send” state.
action1:transfer_load(nn) := ready_to_send
Event 11: Transfer of Load from the Overloaded Node:

After checking the status of the underloaded node, the
load is transferred from the overloaded node which
received the minimum load message ml from the
underloaded node. The transferred load value ld is
subtracted from the total load value of the overloaded
node.

In the event given below, the load is transferred
from the overloaded node to the underloaded node.
Status of node nn and node n is “overloaded” and
“underloaded” respectively (guard4 &7). Message m
is delivered at node n successfully (guard5). Load ld
consists of the load value of node n minus the
threshold value and the value of ld must be a natural
number (guard8 & 9). Node nn sends the reply
message m with the load ld (guard10). Min_load is a
set that contains a natural number (guard11). Message
ml is a reply message which is a minimum load
message (guard12). The reply message ml
corresponding to the message m is received at node nn
(guard13). Node nn is in the domain of transfer_load
and the transfer_load status of node nn is “ready to
send” (guard14&15).

EVENT Load transfer from overloaded node
ANY m, mm, nn, n, ml, min load, ld
WHERE
guard1: m ∈msg_send
guard2: mm ∈msg_send
guard3: {n} = load_balancer
guard4:node_status(n) = underloaded
guard5: (n ↦ m) ∈ deliver
guard6:nn∈ NODE
guard7:node_status(nn) = overloaded
guard8:load_value(n) ∈ N
guard9:ld = load_value(nn) − threshold

guard10: (nn↦ (m ↦ld)) ∈reply_node
guard11:min_load∈ N
guard12: ml ∈min_load_msg
guard13: (nn↦ (m ↦ ml)) ∈reply_msg_rcd
guard14:nn∈dom(transfer_load)
guard15:transfer_load(nn) = ready_to_send
If all the guards stand valid, then the action module

is executed, and the load transfer status is
“completed”. The load value of the overloaded node
nn is decreased by ld as ensured by (action1 & 2).

action1:load_value(nn) := load_value(nn) − ld
action2:transfer_load(nn) := completed
Event 12: Receiving of Load by the Underloaded Node: Load

value ld is received by the underloaded node n and the
load value of n is increased by ld. After receiving the
load, the status of transfer_load is set as “completed”.

According to the event given below, node nn is
present in the domain of transfer_load (guard3). Load
ld is total load value of nn minus the threshold value
(guard5). Message m is in the set msg_send (guard6)
and message ml is in the set min_load_msg (guard7).
We ensure that the load value of node n plus ld is less
than the threshold value (guard9). Status of
underloaded node n is “active” is ensured by the
guard (guard11).

EVENTLoad received by underloaded node
ANY n, nn, m, ml, ld
WHERE
guard1: {n} = load_balancer
guard2:nn∈ NODE
guard3:nn∈dom(transfer_load)
guard4:transfer_load(nn) = completed
guard5:ld = load_value(nn)
guard6: m ∈msg_send
guard7: ml ∈min_load_msg
guard8:load_value(n) ∈ N
guard9:load_value(n) + ld ≤ threshold
guard10:load_value(nn) > threshold
guard11:n_status(n) = active

If all the guards stand valid, then the load value of
the underloaded node n is increased by ld and the
status of transfer_load of node n is set to
“completed” (action1 & 2).

action1:load_value(n) := load_value(n) + ld
action2:transfer_load(n) := completed
Event 13: Failure of the Underloaded Node: The formal

specification of the node failure event is given below.
In this event, we have modelled the failure of
underloaded node. According to this event, n_status
of the underloaded node n is “expired” (guard5). The
overloaded node nn is in the domain of transfer_load
and the status of transfer_load of node nn is “ready to
send” is ensured by the guards (guard6 & 7).

YADAV et al.: FORMAL VERIFICATION OF LOAD DISTRIBUTION PROTOCOL

1087

EVENTFailure of underloaded node
ANY n, nn
WHERE
guard1: {n} = load_balancer
guard2:nn∈ NODE
guard3:node_status(n) = underloaded
guard4:node_status(nn) = overloaded
guard5:n_status(n) = expired
guard6:nn∈dom(transfer_load)
guard7:transfer_load(nn) = ready_to_send
Due to the “expired” status of the underloaded

node n, the transfer_load status of the overloaded
node nn is set as “failed” (action1).

action1:transfer_load(nn) := failed
Event 14: Selection of Another Underloaded Node: After the

failure of the underloaded node n which is the
load_balancer, another underloaded node ud is selected
as the load_balancer. In the event given below, node
n is in the set load_balancer and it is underloaded
(guard1 &2). Node nn is overloaded and the status of
transfer_load at node nn is “failed” due to the
“expired” status of node n. Node ud is in the set NODE
and the status of ud is “underloaded” (guard7 & 8).
We ensure that node n with the status “expired” is not
selected again for receiving the load (guard9).

EVENT Select another underloaded node
ANY n, ud, nn
WHERE
guard1: {n} = load_balancer
guard2: node_status(n) = underloaded
guard3: nn∈ NODE
guard4: node_status(nn) = overloaded
guard5: nn∈dom(transfer_load)
guard6: transfer_load(nn) = failed
guard7: ud∈underloaded_nodes
guard8: node_status(ud) = underloaded
guard9: ud ≠ n
Now, action1 removes the underloaded node n as

the load_balancer and updates with new node ud as
the load_balancer.

action1:load_balancer := {ud}
Event 15: Tolerance of Node Failure: A node is said to

be“failed” when it stops responding to messages.
When the transfer_load status at the overloaded node
is “failed” and the underloaded node n does not
respond to messages within time, it is assumed that
the underloaded node has failed and therefore it is not
able to receive load from the overloaded node. Now,
the fault tolerance approach is formalized. The system
selects a new underloaded node ud for load transfer.
Load from the overloaded node nn is transferred
successfully to the new underloaded node ud which is
the new load_balancer.

In the event given below, another underloaded
node ud is selected and the status of the node ud is

“underloaded” (guard1 &2). Status of previous load
transfer from overloaded node nn is “failed” is
ensured by (guard6). Reply message m corresponding
to the request message mm is not received at the node
ud (guard11). Node ud is in the domain of
transfer_load and its status is “ready to send”
(guard13). Status of node ud is “active” and
message_status is “pending” (guard14 &15).

EVENTTolerance of node failure
ANY mm, nn, m, ud
WHERE
guard1: {ud} = load_balancer
guard2:node_status(ud) = underloaded
guard3:nn∈ NODE
guard4:node_status(nn) = overloaded
guard5:nn∈dom(transfer_load)
guard6:transfer_load(nn) = failed
guard7: mm ∈msg_send
guard8:message_type(mm) = request
guard9: m ∈msg_send
guard10:message_type(m) = reply
guard11: (ud↦ (mm ↦m)) ∉reply_msg_rcd
guard12:ud∈dom(transfer_load)
guard13:transfer_load(ud) = ready_to_send
guard14:n_status(ud) = active
guard15:message_status(m) = pending
If all the guards are valid, then action1 sets the

transfer_load status of node ud as “completed”.
Reply message m is delivered successfully at node ud
(action2). Status of the message is changed from
“pending” to “successful” (action3).

action1:transfer_load(ud) := completed
action2:reply_msg_rcd := reply_msg_rcd∪ (ud↦ (mm ↦ m))
action3:message_status(m) := successful

Event 16 & 17: Change the Status of a Node from “Active”
to “Expired” State and Vice Versa: When an underloaded
node becomes faulty, its status is changed from
“active” to “expired”. In the event given below, node
n is the load_balancer and its status is “underloaded”
(guard2 & 3). The n_status of node n is “active”
(guard4).

EVENT Change status of underloaded node from “active” to
“expired”

ANY nn, n
WHERE
guard1: nn∈ NODE
guard2: {n} = load_balancer
guard3: node_status(n) = underloaded
guard4: n_status(n) = active
Due to the occurrence of this event, the status of

the underloaded node is changed from “active” to
“expired”.

action1:n_status(n) := expired
After the recovery of an underloaded node, the

status of the node is set from “expired” to “active” so

J SCI IND RES VOL 80 DECEMBER 2021

1088

that it can again participate in the process of load
balancing. In the event given below, node n is the
load_balancer and its status is “underloaded”
(guard2 & 3). The n_status of node n is “expired”
(guard4). In this state, node n cannot send or receive
any message.

EVENTChange status of underloaded node from “expired” to
“active”

ANY nn, n
WHERE
guard1: nn∈ NODE
guard2: {n} = load_balancer
guard3: node_status(n) = underloaded
guard4: n_status(n) = expired
In action1, the n_status of node n is set as “active”

so that it can again participate in the process of load
balancing.

action1:n_status(n) := active

Results and Discussion

The above model of receiver-initiated load
balancing algorithm with fault tolerance is verified
and validated by the generation and discharge of
proof obligations with the help of eclipse-based
Event-B platform which assists in the proof
management of models based on distributed systems.
The existing B tools generate proof obligations for
consistency and refinement checking which ensure the
safety property in distributed systems. In order to
provide fairness for selection of overloaded node, the
receiver will select that overloaded node which has
minimum load among all available overloaded nodes.
We add the following invariants for finding minimum
overloaded node:

Invariant 22:∀nk, mk, ld1·(nk∈ NODE
∧node_status(nk) = overloaded ∧mk∈ MESSAGE
∧mk∈dom(message_type) ∧message_type(mk) = reply
∧ ld1 ∈load_val⇒ (nk↦ {mk↦ ld1}) ∈reply_node)

The above specification ensures that the receiver
must receive the load value from all overloaded nodes
for selecting the overloaded node having minimum
load value. To verify the fault tolerance property in
our model, we add following invariant:

Invariant 23:∀nn,n·(nn∈ NODE
∧nn∈dom(transfer_load) ∧node_status(nn) =
overloaded ∧node_status(n) = underloaded∧	
transfer_load(nn) = failed ⇒n_status(n) = expired)

It ensures that the load transfer from the overloaded
node nn fails if the status of the underloaded node n is
“expired”. After failure of load transfer, a new
underloaded node ud will be selected which shares the
extra load of the overloaded node nn. The following

invariant ensures that while load transfer to node ud
takes place it will remain in an active state.

Invariant 24:∀ud·(ud∈ NODE
∧ud∈dom(transfer_load) ∧transfer_load(ud) =
completed ∧node_status(nn) = underloaded
⇒n_status(ud) = active)

The Invariant 25 verifies that if load is transferred
from an overloaded node to the load balancer node
(which is an underloaded node), the load value at the
load balancer node will be less than threshold value.
Therefore, it ensures balancing of the load value.

Invariant 25:∀n·({n}= load_balancer∧ n
∈dom(transfer_load) ∧transfer_load(n) = completed
∧ n∈dom(load_value) ⇒load_value(n) < threshold)

The invariants added to our model verify the
correctness of load transfer and fault tolerance
property in the model. Some of the issues and
challenges27 that occur while designing a load
balancing algorithm which we have tried to address
are as follows:
 The algorithm needs to be stable, scalable28 and

have a low overhead for the system27 so that
optimal processor utilization is achieved along
with maximum throughput. The algorithm
discussed in the paper is scalable as it does not
depend on the number of nodes in the system. The
algorithm does not cause instability in the system
because there is a high probability that the
underloaded node (receiver) will find an
overloaded node (sender) quickly. This gives
receiver-initiated load balancing algorithm an
edge over the sender-initiated load balancing
algorithm in which the responsibility of finding
the underloaded node or receiver, lies with the
overloaded node or sender. This sender or
overloaded node is already burdened and at high
system loads it becomes difficult to find a
receiver or underloaded node.

 The algorithm must ensure that the load (task) is
not transferred continuously from one node to
another node without being executed.29 Since the
load balancing process in our algorithm is
initiated by an underloaded node, the load transfer
to this node stops as soon as the load value at this
node reaches the threshold load value. Thus, the
processes do not get transferred continuously
from one node to another without any execution.
This is also ensured by Invariant 25.

YADAV et al.: FORMAL VERIFICATION OF LOAD DISTRIBUTION PROTOCOL

1089

 The overhead of running a load distribution
algorithm must not affect the overall efficiency or
throughput of the system. Also, the algorithm
must be general and transparent to the
application.30 Our algorithm does not affect the
efficiency or throughput of the system because
the load balancing activity is initiated and
implemented by the underloaded node whose
processing capability is still underutilized.

The novelty of the algorithm lies in the faction that
load is first transferred from the least overloaded node
to the underloaded node. This maximizes the number
of overloaded nodes which can be addresses by an
underloaded node. The algorithm is optimized to
maximize the number of nodes with optimum load
i.e., load value nearing the threshold value. Each step
of the algorithm is formalized with the help of events
comprising of guards and actions. Also, the feature of
fault tolerance and recovery have been added to make
the algorithm more robust.

Complexity Analysis – A formal model for
receiver-initiated load balancing protocol for
distributed systems or message passing systems has
been proposed in this paper. In message passing
system, the complexity of the model is measured in
terms of communication cost i.e., the number of
messages used by the algorithm. In this model, it is
assumed that there are n nodes in the system.

The underloaded node (or receiver of load) broadcasts
a request message to all the nodes except itself.
Therefore, the number of messages required will be n – 1

After receiving the request message, only the
overloaded nodes reply to the requesting node
(underloaded node or load adjusting node). Assuming
that there are k overloaded nodes, such that k ≤ n – 1.
Number of messages required for replying to the
underloaded node = k.

After determination of optimal or minimum
overloaded node, the underloaded node (receiver of
load) informs the optimal overloaded node (sender)
that it has been selected for load transfer. Number of
messages required for this purpose = 1

Total number of messages = (n – 1) + (k) +
1 = n+k.

In the worst-case k = n -1
Therefore, the total number of messages required in

the worst case = n + (n-1) = 2n - 1
Hence, the message complexity of the algorithm is

2n-1 messages in order to find the optimal overloaded
node.

Conclusions
The formal specification of the receiver-initiated

load balancing protocol with fault tolerance in
distributed systems using Event-B is discussed in
detail in this paper. Receiver-initiated load balancing
is a protocol, where the activity of load balancing is
initiated by the underloaded node (receiver) which
tries to obtain load from an overloaded node (sender).
Event-B is a formal technique for mathematical
specification of models of distributed systems step by
step and then verifying the correctness of the system
through discharge of proof obligations. Event-B
supports a refinement-based approach for the
development of models of distributed system
algorithms and protocols. Eclipse based Rodin
platform is used to carry out this work. The
generation and discharge of proof obligations ensure
consistency checking and refinement checking of the
proposed model. The proof obligations are also
helpful in creating new invariants which lead to better
understanding of the problem and verify the
correctness of its proposed solution. All the proofs
generated by the model have been discharged. A total
of 160 proof obligations are generated during
verification of the model out of which 128 are
discharged automatically while the remaining 32 are
discharged interactively by provers of Event-B tools.
It ensures that load balancing and fault tolerance
properties are preserved in the model. This model
gives a clear insight about the process of load transfer
from one node to another for achieving uniform load
distribution among nodes.

References
1 Begum S & Prashanth C, Review of load balancing in cloud

computing, Int J Comput Sci Issues (IJCSI), 10(1) (2013)
343.

2 Singhal M & Shivaratri N G, Advanced Concepts in
Operating Systems, McGraw-Hill Science/Engineering/Math,
1994.

3 Eager D L, Lazowska E D & Zahorjan J, A comparison of
receiver-initiated and sender-initiated adaptive load sharing,
Perform Eval, 6(1) (1986) 53–56.

4 Chou T C K & Abraham J A, Load balancing in distributed
systems, IEEE Trans Soft Eng, (4) (1982) 401–412.

5 Elnozahy E N, Alvisi L, Wang Y-M, Johnson D B, A survey
of rollback-recovery protocols in message-passing systems,
ACM Computing Surveys (CSUR), 34(3) (2002) 375–408.

6 Suryavanshi R & Yadav D, Rigorous design of lazy
replication system using Event-B, in Int Conf Contempor
Comput, Springer, 2012, 407–418.

7 Chandra G, Suryavanshi R, Yadav D, Formal verification of
distributed checkpointing using Event-B, Int J Comput Sci
Inf Technol, 7(5) (2015) 59–73.

J SCI IND RES VOL 80 DECEMBER 2021

1090

8 Yadav D & Butler M, Rigorous design of fault-tolerant
transactions for replicated database systems using Event B,
in Rigorous Development of Complex Fault-Tolerant
Systems, Springer, 2006, 343–363.

9 Chandra G & Yadav D, Verification of money atomicity in
digital cashbased payment system, Int Conf Inf Syst Secur,
Springer, 2012, 249–264.

10 Lahbib A, Wakrime A A, Laouiti A, Toumi K & Martin S,
An Event-B based approach for formal modelling and
verification of smart contractions, in Int Conf Adv Inf
Network Appl, Springer, 2020, 1303–1318.

11 Lahouij A, Hamel L, Graiet M & el Ayeb B, An Event-B
based approach for cloud composite services verification,
Form Asp Comput, 32(4) (2020) 361–393.

12 Karmakar R, Sarkar B B & Chaki N, Event-B based formal
modeling of a controller: A case study, Proc Int Conf
Frontiers Comput System, Springer, 2021, 649–658.

13 Ali, Alhaj A, Chramcov B, Jasek R, Katta R & Krayem S, Fault
Tolerant Sensor Network Using Formal Method Event-B,
in Comput Sci On-line Conf, Springer, Cham, 2021, 317–330.

14 Le A H, Van Khanh T & Thuan T N, Formal Analysis of
Database Trigger Systems Using Event-B, Int J Softw Innov
(IJSI), 9(4) (2021) 1–16.

15 Yadav P, Suryavanshi R, Singh A K & Yadav D, Formal
verification of causal order-based load distribution
mechanism using Event-B, in Data Eng Appl, Springer,
2019, 229–241.

16 Shukla S, Suryavanshi R S, Yadav D, Split point load
balancing algorithm based on Event B, Int J Innov Technol
Explor Eng (IJITEE) 8(9) (2019) 2258–2265.

17 Suryavanshi R & Yadav D, Formal development of
byzantine immune total order broadcast system using Event-
B, in Int Conf Data Eng Manag, Springer, 2010, 317–324.

18 Hoang T S, Dghaym D, Snook C & Butler M, A composition
mechanism for refinement-based methods, in 22nd Int Conf
Eng Complex Comput Syst (ICECCS), IEEE, 2017, 100–109.

19 Bodeveix J-P, Dieumegard A, Filali M, Event-B
formalization of a variability-aware component model
patterns framework, Sci Comput Program, 199 (2020)
102511

20 Singh A & Yadav D, Formal specification and verification
of total order broadcast through destination agreement
using Event-B, Int J Comput Sci Inf Technol, 7(5) (2015)
85–95.

21 Metayer C, Abrial J & Voison L, Event-B Language,
RODIN Deliverables 3.2 (2005).

22 Abrial J-R, The B-book: Assigning Programs to Meanings,
Cambridge university press, 2005.

23 B UK, Core (uk) limited, oxon, B-toolkit, on-line manual,
1999.

24 Abrial J-R, A system development process with Event-B and
the rodin platform, in Int Conf Formal Eng Methods,
Springer, 2007, 1–3.

25 Steria F. Aix-en-Provence, Atelier B, User and Reference
Manuals, 2001.

26 Abrial J-R & Cansell D, Click’n’ prove: Interactive proofs
within set theory, in Int Conf Theorem Prov Higher Order
Logics, Springer, 2003, 1–24.

27 Rajguru A A & Apte S, A comparative performance analysis
of load balancing algorithms in distributed system
using qualitative parameters, Intl J Recent Technol Eng,
1(3) (2012) 175–179.

28 Ivanisenko I N & Radivilova T A, Survey of major load
balancing algorithms in distributed system, in Inform
Technol Innov Bus Conf (ITIB), IEEE, 2015, 89–92.

29 Sharma S, Singh S & Sharma M, Performance analysis of
load balancing algorithms, World Acad Sci Eng Technol,
38(3) (2008) 269–272.

30 Salehi M A, Deldari H & Dorri B M, Balancing load in a
computational grid applying adaptive, intelligent colonies of
ants, Informatica, 33(2) (2009).

