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The large signal due to cardiac activity can easily distort the signals originating from the relatively weak electrical 

activity of the brain, commonly measured as an Electroencephalogram (EEG). The artifact due to cardiac activity in EEG is 

called cardiac artifact, which contaminates the EEG data and makes interpretation of the EEG difficult for clinicians. Hence 

it is crucial to remove the cardiac artifact from EEG data. To suppress the cardiac artifact, we propose a novel approach to 

effectively extract cardiac artifacts from single-channel contaminated EEG data without using reference Electrocardiogram 

(EKG) data. The proposed methodology uses Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(CEEMDAN) to decompose EEG data contaminated by cardiac activity into the Intrinsic Mode Functions (IMFs). Principal 

Component Analysis (PCA) is performed on these IMFs to obtain the principal components arranged in the order of 

decreasing variance. Effective cardiac artifact extraction is achieved by optimizing the signal reconstruction process so that 

only those principal components that capture the cardiac activity are retained with the constraint that distortion introduced in 

EEG data should be minimum. The comparison clearly shows that the proposed method outperforms conventionally 
employed methods like wavelet-based approach. 
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Introduction 

In a clinical setting, EEG recordings are commonly 

used to detect functional abnormalities in the brain. 

EEG signals are often contaminated by different types 

of artifacts
1
 and make interpretation of the EEG data

difficult. Hence it is crucial to suppress the artifact 

from the contaminated EEG data to obtain clean EEG 

data. The artifacts originated from biological activities 

are inevitable in nature and can be classified into 

two types:  

1) Type-I: These artifact signals such as eye-blink

and subject's movement originate at a particular

instant of time. EEG data segments contaminated

by type-I artifacts can be discarded in long-

duration of recorded EEG data. Several different

techniques
2–8

 have been implemented to remove

the artifact in relatively shorter EEG recording.

2) Type-II: In this category of artifact (those

originating from cardiac activity), the whole

EEG recording is contaminated as the artifact

is continuously present. There are a few

approaches
9–11

 available in the literature for the

effective extraction of the cardiac artifact.

Moreover, most of these approaches require 

additional information. These additional 

information are obtained either using an 

additional reference Electrocardiogram (EKG) 

channel or based on multichannel EEG data. 

From Fig. 1 the cardiac contamination in multi-

channel EEG recording could be observed. 

The wavelet-based approach is one of the popular 
techniques for suppressing cardiac artifacts from 
single-channel EEG data. In the wavelet-based 
approach, a predefined mother wavelet function is 
utilized to decompose the EEG data using a fixed set 

of filters or basis functions. The efficacy of wavelet-
based artifact suppression depends upon the selection 
of a particular mother wavelet function. This 
limitation is addressed by data adaptive techniques, 
where the analytic functions are derived adaptively 
directly from the input signal.

12
 However, these 

data adaptive approaches, Empirical Mode 
Decomposition (EMD), and Ensemble Empirical 
Mode Decomposition (EEMD) techniques suffer from 
the generation of different modes, leading to different 
realizations of the reconstructed signal. 

A new ensemble approach is recently proposed 

called Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) to 
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overcome this draw backs. CEEMDAN estimates the 

local means, whereas EEMD estimates modes from 

the resultant signal (signal plus added white noise). 

Modes overlapping avoided in the CEEMDAN 

approach by adding EMD mode of noise instead of 

white noise for generating all the IMFs, resulting in 

less residual noise in the modes and, hence, a better-

reconstructed signal. Details of the CEEMDAN 

approach could be found in the literature.
13,14

 

In the present work, CEEMDAN is combined with 

Principal Component Analysis (PCA) to effectively 

extract cardiac artifacts from single-channel 

contaminated EEG data. The CEEMDAN technique is 

implemented on the contaminated EEG data to 

decompose into IMFs. The cardiac artifact extraction is 

achieved by implementing PCA on IMFs and selecting 

those principal components, which extract the signal 

associated with the cardiac activity from the IMFs. 
 

Materials and Methods 
 

Data Acquisition 

A total of 20 subjects (age: 25 to 35 years) took 

part in the EEG experiments and written informed 

consent for participation was taken from all the 

subjects. All EEG recordings were done using a 64 

channel Neuro-Scan system for acquiring brain 

signals with a sampling rate of 1 kHz, and bandwidth 

was selected from 0 to 200 Hz. In each experiment, 

EEG data was recorded for approximately 10 minutes 

of duration. The EEG data was found to be 

significantly contaminated by cardiac artifacts for five 

subjects (subject_1, subject_2, subject_3, subject_4, 

subject_5), making it imperative to adopt a suitable 

strategy for cardiac artifact suppression. 
 

Artifact Detection Measures and its Removal Evaluation 

Kurtosis and the absolute skewness value were 

used to identify the cardiac artifact in each epoched 

data segment of one-second duration. 

i) Skewness: The presence of cardiac artifact in a 

contaminated EEG data segment may result in a 

higher absolute value of skewness.
15,16 
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where, E is the expectation operator, µ is the mean 

and σ is the standard deviation. 

ii) Kurtosis: It indicates the degree of peakedness of a 

distribution. A higher value of kurtosis in the EEG 

data segment contaminated by cardiac activity is 

expected due to the presence of R-peak in the 

cardiac cycle.
15,16 
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In the present work, we have used the correlation 

coefficient (between the extracted cardiac artifact and 

reference channel EKG) and changes in the grand 

Power Spectral Density (PSD) in the frequency range 

of brain rhythms (delta: 0.5–3 Hz, theta: 4–7 Hz, 

alpha: 8–12 Hz and beta: 13–30 Hz) as metrics to 

compare the performance of the proposed artifact 

extraction methodology with that of the conventional 

wavelet-based technique. The correlation coefficient 

shows a linear correlation between two variables, and 

its values range from +1 to −1, where +1 represents 

complete similarity, and 0 indicates no similarity. The 

correlation coefficient is computed between the 

reference channel EKG data and the cardiac artifact 

extracted from the contaminated EEG data to measure 

the extent of the similarity. 

The criteria used for selecting a superior approach 

for the cardiac artifact suppression among the 

different approaches are based on the higher value of 

the correlation coefficient and the lower value of 

distortion introduced into the brain signal after the 

suppression of the cardiac artifact. 

 
 

Fig. 1 — Cardiac artefact contamination in multi-channel EEG 

data 
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Data Analysis 

Contaminated EEG channels CP2, CP1, C1, and 

C2 clearly showed the characteristic pattern of the 

cardiac signal for five subjects. In the present study, 

the first ten segments of these contaminated channels 

were selected from each subject. Hence, 200 segments 

were available from five subjects for analyzing the 

EEG data contaminated by cardiac artifacts. The 

contaminated data segment recorded at the CP2 

electrode and the corresponding reference channel 

EKG data from subject_1 is shown in Fig. 2.  

The present work subtracted the mean from all the 

EEG channels before processing the EEG data. EEG 

data were segmented into one-second duration using a 

moving window approach, ultimately capturing a 

cardiac cycle. In a moving window of 1-second 

duration, R peak occurrence is checked in the 

contaminated EEG data. Python-based software was 

used for analyzing the EEG data.
17,18

 All 200 

contaminated EEG segments were taken to validate 

the artifact's detection based on numerical values of 

kurtosis and absolute skewness. The applied approach 

is summarized as follows: 

i) In the present work, it was possible to detect all the 

EEG data segments contaminated due to the 

cardiac activity by setting suitable thresholds for 

the absolute skewness > 2.45 and kurtosis > 8.95. 

ii) CEEMDAN was performed on a contaminated 

EEG data segment recorded at the CP2 electrode 

resulting in IMFs as shown in Fig. 3. 

iii) After obtaining IMFs, PCA was used to capture 

the features corresponding to the cardiac activity 

from the IMFs. All these IMFs were given as 

input for PCA to obtain principal components. 

The optimum number of principal components 

retained for the reconstruction of the cleaned EEG 

data is based on the maximum extraction of 

cardiac artifact with lesser distortion introduced in 

the brain signal. 

The amplitude of the extracted cardiac artifact is 

shown in Table 1, after reconstructing the clean EEG 

data by varying the principal components from 1 to 4 

during reconstruction for a contaminated CP2 

segment. The change in the grand PSD of the EEG 

data using Welch's method after suppression of 

cardiac artifact using the proposed method could be 

observed from Table 1. 
 

Results and Discussion 

In the present work, retention of only a few 

principal components for a reconstruction of the clean 

EEG signal (up to four principal components were 

retained for the reconstruction of the clean EEG 

signal) was found to be optimum to extract the cardiac 

artifact from the contaminated EEG segment 

effectively. The extracted cardiac artifact from the 

 
 

Fig. 2 — A section of contaminated EEG data: (a) recorded at 

CP2 electrode from subject_1, (b) the corresponding section of the 

reference EKG electrode 

 
 

Fig. 3 — Decomposition of the contaminated EEG data recorded 

at the CP2 electrode (IMF1 to IMF10) using CEEMDAN 
 

Table 1 — Amplitude of the cardiac artifact extracted from the 

contaminated EEG data (CP2 electrode from subject_1) and 

change in the grand ∆PSD of the EEG data when the clean 

EEG signal is reconstructed by varying the number of principal 
components retained 

Amplitude of the 

extracted cardiac  
artifact (µV) 

Grand ∆PSD 

(µV)2/Hz 

Number of Principal 

Components  
retained 

3.18 6.78 1 

18.91 2.83 2 

29.75 2.54 3 

30.11 2.43 4 

30.71 3.71 5 
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contaminated EEG data segment using the proposed 

approach is shown in Fig. 4. The wavelet-based 

method's results are depicted in Fig. 5; a Symlet 

(sym8) function was used as the mother wavelet.
19

 

The cleaned EEG data were reconstructed by setting 

the coefficients of noisy components of the wavelet 

decomposed data to zero.  

A quantitative comparison of the performance 

obtained by using wavelet and proposed approach is 

shown in the Table 2. The comparison metrics are 

based upon the correlation coefficient between the 

extracted cardiac artifact and the EKG reference 

electrode data, as well as the distortion introduced in 

the brain signal by the method used for the 

suppression of the cardiac artifact (change in grand 

power spectral density of the EEG data in frequency 

bands corresponding to the brain activity when the 

cardiac artifact is suppressed) using one contaminated 

EEG segment CP2 recorded from subject_1. Higher 

correlation with the artifact reference channel shows 

better artifact extraction, and lower change in grand 

PSD values correspond to lower distortion introduced 

in the EEG data. Overall comparison based on 200 

contaminated EEG segments is tabulated in Table 3. It 

is evident from Table 2 and Table 3 that the proposed 

technique yields a high value of correlation 

coefficient with the lowest distortion introduced in the 

actual brain signal compared to other conventional 

approaches. Furthermore, one-way ANOVA and 

Tukey HSD post-hoc test is performed on correlation 

coefficient and grand Δ PSD based on Table 3, which 

indicates that the proposed technique results are 

significant (p < 0.05). 

Conclusions 

The proposed method is capable of suppressing the 

cardiac artifact effectively and minimally distorts the 

EEG data. In the present work, effective suppression 

of cardiac artifacts can be achieved after proper 

detection, and hence optimal adjustment of the 

detection parameters may be required for different 

EEG setups. The most significant advantage of the 

present approach is that it does not require any 

reference channel. The proposed method is more 

accessible and overcomes the limitations of selecting 

the optimal basis functions in the wavelet-based 

technique. In future studies, the feasibility of the 

proposed approach can be investigated for cardiac 

artifact suppression in the advanced functional neuro 

imaging technique called Magneto encephalography. 

Fig. 4 — (a) Cleaned EEG data after suppression of cardiac 

artifact using the proposed method; (b) m:EKG artifact extracted 

from the contaminated EEG data 

Fig. 5 — (a) Cleaned EEG data after suppression of cardiac 

artifact using the wavelet based, (b) EKG artifact extracted from 

contaminated EEG 

Table 2 — Comparison of performance of the proposed 

method with other conventional approaches based on 

correlation coefficient and change in the grand ∆PSD in 

the EEG data (CP2 electrode from subject_1) using one 
EEG segment 

Technique Correlation 

coefficient 

Grand ∆PSD 

(µV)2/Hz

Wavelet approach 0.90 3.12 

Proposed approach 0.96 2.43 

Table 3 — Comparison of performance of the proposed 

method with other conventional approaches for cardiac 

artifact suppression using 200 contaminated EEG segments 

Technique Correlation 

coefficient 

(mean ± std) 

Grand ∆PSD 

(µV)2/Hz 

(mean ± std) 

Wavelet 0.81 ± 0.14 9.66 ± 6.21 

Proposed 0.89 ± 0.09 7.16 ± 4.17 
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