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Real-time scheduling problems increase the practical implementation of the manufacturing system. In this study, using 
a single objective performance measure i.e., Number of Tardy Jobs (NTJ), the influence of 5 input constraints, i.e., 
reliability level (R_L), percentage of machine failure (%McF), mean time to repair for random machine breakdown 
(MTR_RMcB), due date tightness factor (Ғ), and routing flexibility level (R_FL) were evaluated for considered stochastic 
Flexible Job Shop Scheduling Problem (FJSSP). The study integrated reliability-centered preventive maintenance (PMRC) 
and random machine breakdown (RMcB) environment with sequence-dependent setup time in the considered problem. A 
statistical response surface methodology was used to assesses NTJ. A second-order regression model was obtained to 
compute correlation between input constraints and NOTJ at 95% confidence level. The results demonstrate that main effects 
of R_L, %McF, Ғ, and R_FL; the interaction effects of R_L and Ғ, %McF and R_FL, MTR_RMcB and R_FL, and Ғ and 
R_FL; and quadratic effects of Ғ and R_FL, have significant impact on NTJ performance measure. Ғ has emerged as the 
major factor affecting NTJ. The confirmatory data demonstrate that error is less than 5%, confirming model can be used for 
future computations. Further, the novelties of the work are shown by the fact that it takes into account the uncertainties in 
the scheduling issue, as well as the dynamic tasks arrival environment. The aforementioned findings will assist production 
managers in planning and scheduling flexible job shops in order to satisfy customer demand on time. 

Keywords: Random machine failure, Reliability-based maintenance, Routing flexibility, Sequence-dependent setup time, 
Simulation-optimization approach 

Introduction 
Schedules are critical components of the 

manufacturing system that have an impact on the 
whole production process, both positively and 
negatively. Scheduling is a term used to describe 
activities that must be performed under various 
conditions in order to keep the production system 
under control and optimized. However, maintenance 
activities keep the production system running. So, 
practical maintenance may extend machine life. Most 
scheduling issues presume that machines are always 
available and that maintenance avoids unforeseen 
disruptions. Still, unexpected machine breakdown 
(McB) cause machine unavailability and reduced 
operating time. So, the manufacturing system must 
consider both preventive maintenance (PM) and 
RMcB. 

PM is a set of checks and adjustments made to an 
apparatus before it develops a fault. Many strategies 
for PM are being measured by investigators. To get 

machine back to as-good-as-new state, several 
researchers have proposed seven different kinds of 
PM methods, according to Wang.1 These approaches 
were specific time period, i.e., periodic, age-oriented, 
repair limit, reliability-oriented failure limit, number 
of repair based, sequential, and time bound reference 
PM. Numerous unforeseen issues may arise in an 
unplanned machine failure that reduces production 
efficiency and lengthens delivery times. Integrating 
PMRC and RMcB in FJSSP will provide real-world 
scheduling circumstances. Therefore, integrating 
these characteristics is an important direction in 
scheduling problem. 
 

An optimal reliability threshold of 0.82 was 
reported by Chen et al.2 using reliability based 
maintenance under FJSSP with sequence-dependent 
setup time (SdSt). They discovered that the precise 
maintenance approach had a superior statistical record 
than the others. Rahmati et al.3 considered condition-
based maintenance (CBM) based on reliability to 
improve efficiency in an integrated FJSSP and 
maintenance strategy. They found that the suggested 
strategy was able to intelligently and independently 
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control the process. According to Liao et al.4 age-T or 
periodic maintenance policy performs better than 
reliability-based PM strategy. It was determined that 
using this method will reduce both the frequency and 
expense of maintenance cycles. Gupta and Jain5 
studied the influence of reliability-centered periodic 
preventive maintenance (rcppm), and PMRC 
approaches in job shop scheduling problem (JSSP). In 
rcppm method lower level of maintenance time 
provided the best results. They also found that for the 
PMRC approach, 0.74, 0.78, and 0.82 were proposed 
for all response except NTJ and mean tardiness. 
However, if maintenance time was 15% or more 
PMRC, and for maintenance time, 10% or less rcppm 
technique was recommended. 

Holthus6 studied the effect of dispatching rule 
dynamic JSSP with McB, and found varying the 
number of breakdown factors affect the performance of 
the dispatching rules. Simulation-based McB was 
investigated by Ahmadi et al.7 under FJSSP. Their 
statistical findings suggest that for spacing, non-
dominating sorting genetic algorithm-II (NSGA-II), 
and for diversity, non-dominated ranking genetic 
algorithm (NRGA) was the best method. Sajadi et al.8 
considered breakdown simulator for FJSSP with 
RMcB. Their results show that in all three used metrics 
NRGA presence was more robust and stable than 
NSGA-II. Goren and Sabuncuoglu9 used simulation 
approach with variable processing time and McB in 
their studied. The study's findings demonstrated that a 
methodical approach yields superior results, regardless 
of issue size. Singh et al.10 considered sequence-
independent and SdSt in flow shop scheduling 
environment. They found that their hybrid GA method 
performed better and reduced the make span by five 
times. Shahzad et al.11 studied a multi-objective single-
machine scheduling problem using the branch and 
bound method. As a result, they reduce the search 
space by dominance rules in their study for a single 
machine. They also found that for a small-scale 
problem, the proposed method provides better results. 
Gupta and Jain12 considered PM and RMcB aspect in 
FJSSP. They have done multi-objective optimization of 
system performance measure. Almahmoud et al.13 
studied the effect of reliability-based maintenance on 
Aluminum based manufacturing plant using dynamic 
programming approach. Their result indicates that the 
proposed method provides better results. They also 
found that higher reliability required larger number of 
shutdowns. They also concluded that implementing 
this model would be useful for the plants since it would 

help to maintain the machinery at safe reliability levels, 
hence lowering the probability of unexpected 
breakdowns. Pradhan and Satapathy14 considered 
independent task scheduling problem with energy 
consideration. They energy-based performance measure, 
i.e., energy consumption is estimated based on minimum 
completion time. They found that their proposed method 
provides better results as compare to other.  

The literature review reveals that most researchers 
considered Wei-bull distribution for McB with 
exponentially distributed elements. Researchers 
suggested considering simultaneously PMRC and RMcB 
with SdSt and R_FL under stochastic and dynamic job 
scenario in JSSP. Most studies solely evaluated 
maintenance or machine failure in independent from 
scheduling issues, and only a minority of studies 
included both. This study aims to perform single-
objective optimization using the desirability approach 
for considered stochastic FJSSP with simultaneous 
PMRC and RMcB with SdSt.  

Experimental Details 

Job Shop Configuration 
In this investigation, ten different machines are 

considered on the shop floor. Each machine 
characterised, distinct scale and shape parameter. Six 
distinct job types, i.e., Job TypeA to Job TypeF, were 
considered. Job arrived dynamically with equal 
likelihood on shop floor. Job type has distinct path 
and number of operations to perform (NOPP) as 
shown in Table 1. Job TypeB, Job TypeE and Job 
TypeC each have total 6 NOPP. Job TypeA and Job 
TypeF have total 5 NOPP and Job TypeD has total 4 
NOPP. In this investigation, processing time (PT) and 
SdSt was utilised evenly distributed and stochastic. PT 
on substitute machines at different flexibility levels 
and SdSt on each job change are shown in Table 1 and 
Table 2, respectively. Further, routing flexibility 
levels (R_FL) are considered from R_FL0–R_FL6, 
and shortest processing time (SPT) sequencing rule 
was used for allocation of job. 

Preventive Maintenance Data 
In this research, PMRC was employed, where if the 

machine's reliability drops below a certain threshold, 
the maintenance performed on it will bring it back to 
original specifications, i.e., as-good-as-new state. 
Two-parameter Wei-bull distribution was consider by 
various researchers to study machine failure.2,4,5 

The Wei-bull distribution has a strong influence on 
determining the machine's operating duration, 
dependent on the failure probability. For machine at 
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operation time T௞ reliability R௞ሺT௞ሻ can be expressed 
by Eq. (1).(2,5) 

R௞ሺT௞ሻ ൌ exp ൤െ ቀ
୘ೖ
Øೖ
ቁ
βೖ
൨ , T௞ ൒ 0 … (1) 

The T௞ can be calculated as given by Eq. (2).

T௞ ൌ ሺെ1ሻ  ൈ  Ø௞  ൈ  ൣln൫R௞ሺT௞ሻ൯൧
భ
βೖ … (2)

Normal-log distribution was suggested by 
researchers for computing the maintenance time (t) 
required for maintenance. The following interrelation 
ship is used to compute t as given by Eq. (3).(3,15) 

Table 1— Processing time 

Job
Typei Operation Mc1 Mc2 Mc3 Mc4 Mc5 Mc6 Mc7 Mc8 Mc9 Mc10 

A 

1 NA Un(6,7) NA Un(10,11) Un(7,8) Un(11,12) Un(9,10) NA Un(5,6) Un(8,9) 

2 NA Un(10,11) NA Un(7,8) Un(11,12) Un(6,7) NA Un(9,10) Un(12,13) Un(8,9) 

3 Un(9,10) NA Un(12,13) Un(11,12) NA Un(10,11) Un(13,14) Un(8,9) NA Un(7,8) 

4 NA Un(6,7) Un(9,10) Un(12,13) Un(7,8) NA Un(8,9) NA Un(11,12) Un(10,11) 

5 Un(10,11) Un(14,15) Un(13,14) Un(8,9) NA Un(12,13) NA Un(11,12) NA Un(9,10) 

B 

1 Un(9,10) Un(13,14) NA Un(10,11) Un(14,15) Un(11,12) NA Un(8,9) NA Un(12,13) 

2 Un(9,10) NA Un(5,6) NA Un(8,9) NA Un(6,7) Un(11,12) Un(10,11) Un(7,8) 

3 Un(12,13) Un(7,8) Un(9,10) NA Un(6,7) Un(11,12) Un(10,11) NA Un(8,9) NA 

4 Un(11,12) NA NA Un(9,10) Un(13,14) Un(10,11) Un(8,9) Un(12,13) NA Un(7,8) 

5 Un(4,5) NA Un(8,9) Un(7,8) NA Un(6,7) NA Un(9,10) Un(5,6) Un(10,11) 

6 NA Un(7,8) Un(10,11) NA Un(12,13) Un(8,9) Un(13,14) Un(9,10) NA Un(11,12) 

C 

1 Un(10,11) NA Un(12,13) Un(7,8) NA Un(11,12) Un(6,7) NA Un(9,10) Un(8,9) 

2 Un(6,7) Un(4,5) NA Un(8,9) Un(5,6) NA Un(7,8) NA Un(3,4) Un(9,10) 

3 Un(11,12) NA Un(6,7) Un(9,10) NA Un(7,8) NA Un(10,11) Un(12,13) Un(8,9) 

4 Un(3, 4) NA Un(6,7) Un(9,10) Un(5,6) NA Un(8,9) Un(4,5) NA Un(7,8) 

5 Un(6,7) Un(9,10) NA Un(4,5) NA Un(7,8) Un(8,9) Un(10,11) NA Un(5,6) 

6 Un(11,12) NA Un(12,13) Un(15,16) Un(16,17) Un(10,11) NA Un(13,14) Un(14,15) NA 

D 

1 Un(9,10) NA Un(5,6) NA Un(4,5) Un(7,8) NA Un(6,7) Un(10,11) Un(8,9) 

2 Un(11,12) NA Un(14,15) NA Un(10,11) Un(15,16) Un(9,10) NA Un(12,13) Un(13,14) 

3 NA Un(7,8) Un(12,13) Un(10,11) NA Un(8,9) Un(9,10) NA Un(6,7) Un(11,12) 

4 Un(9,10) NA Un(12,13) Un(8,9) Un(13,14) Un(10,11) NA Un(7,8) NA Un(11,12) 

E 

1 NA Un(7,8) NA Un(10,11) Un(9,10) NA Un(8,9) Un(13,14) Un(12,13) Un(11,12) 

2 Un(5,6) Un(10,11) NA Un(7,8) NA Un(11,12) Un(9,10) NA Un(6,7) Un(8,9) 

3 Un(10,11) NA Un(7,8) NA Un(9,10) Un(8,9) NA Un(6,7) Un(12,13) Un(11,12) 

4 NA Un(8,9) Un(12,13) Un(10,11) NA Un(7,8) Un(11,12) Un(9,10) NA Un(6,7) 

5 Un(5, 6) NA NA Un(8,9) Un(10,11) Un(4,5) Un(9,10) NA Un(7, 8) Un(6,7) 

6 NA Un(11,12) NA Un(9,10) Un(12,13) NA Un(13,14) Un(10,11) Un(15,16) Un(14,15) 

F 

1 Un(10,11) Un(16,17) Un(13,14) NA Un(11,12) NA Un(15,16) Un(14,15) NA Un(12,13) 

2 NA Un(6,7) Un(9,10) NA Un(7,8) Un(10,11) Un(5,6) Un(11,12) Un(8,9) NA 

3 NA Un(8,9) NA Un(6,7) Un(11,12) Un(9,10) NA Un(7,8) Un(5,6) Un(10,11) 

4 Un(11,12) NA Un(13,14) NA Un(9,10) NA Un(12,13) Un(14,15) Un(15,16) Un(10,11) 

5 Un(12,13) NA Un(9,10) Un(15,16) Un(11,12) NA Un(10,11) NA Un(14,15) Un(13,14) 

R_FL0 R_FL1 R_FL2 R_FL3 R_FL4 R_FL5 R_FL6 

Legends: Mci = Machine number, Un = Uniform distribution, R_FLi = Routing flexibility level 
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Maintenance time (t) ~ log-normal (μPM ; σPM)  … (3) 

The values of β௞, Ø௞, μPM, and σPM are taken from 
the literature. Hence, t is distinct for each and every 
considered machine. Further, range of β௞, Ø௞, μPM, 
and σPM are varies between 1.5–1.96, 62–100, 
3.61–7.11, and 0.09–0.179, respectively.2–5 In this 
study, reliability level (R_L) was considered as input 
factor, which varies from 0.74 – 0.90.(2–5) 

Symbols used in equations are: 

T௞ - Operation time t - Maintenance
time

β௞ - Shape parameter Ø௞ - Scale parameter
R௞ሺT௞ሻ - Reliability of

machine 
μPM - Mean value 

σPM - Standard
deviation

Rs - Reliability
threshold level 

Random Machine Breakdown Data 
Considering RMcB in FJSSP will paradigm the 

scheduling problem in real time manufacturing 
scenario, breakdown time and the duration between 
breakdowns are two measures used to describe 
machine failure. Which are exponentially distributed. 
Machine failure is expressed mathematically as 
%McF (percentage machine failure), and is calculated 
by Eq. (4).(6,7)  

%McF ൌ  
୑୘ୖ_ୖ୑ୡ୆

୑୘ୖ_ୖ୑ୡ୆ା୑୘୆୊_ୖ୑ୡ୆
… (4) 

where, MTR_RMcB = mean time to repair for 
RMcB, and MTBF_RMcB = mean time between failure 
for RMcB. In this study, PMF and MTR_RMcB were 
varies from 0–10% and 1 × P − 10 × P, correspondingly. 
P is known average processing time.6,7

Mean Inter-Arrival Time (miat) 
It is known as mean amount of time occupied 

throughout jobs arrival. As demonstrated by 
researchers, job arrival process obeys Poisson 
distribution. Therefore, interval between arrivals of 

jobs is exponentially. In present investigation, miat 
was kept in such a manner so as to maintain the shop 
at 90% utilization level. Moreover, as nature of 
considered problem is stochastic. Thus, shop load is 
assessed between 1.5% of the targeted shop load.16,17 

Jobs Due Date 
It is the time frame in which the order to complete 

the task must be fulfilled. In this study, we used the 
total work content (TWC) methodology. It is 
computed using Eq. (5).(16,17)

 

due_dj = aj + Ғ(pj + njµs) … (5)

where, due_dj = jobs due date, aj = job arrival time, pj 
= mean processing time, nj = number of operations, 
and µs= average of average setup time. In present 
investigation, Ғ varies from 1–4.  

Simulation Model Configuration  
Simulation modelling is approach to find a solution 

of intricate issue. This study uses Pro-Model® 
simulation software to develop a discrete-event 
simulation model for stochastic JSSP under 
simultaneous RMcB and PMRC with routing flexibility 
and SdSt. The work flow of the issue under 
consideration is demonstrated in Fig. 1. The 
assumptions of the simulation model were taken as 
Gupta and Jain and Sharma and Jain.5,16 

Performance Measure 
To measure the system's performance, NTJ was 

taken as the performance measure of the system, it is 
defined as sum of all jobs completed after deadline 
time. It is computed by Eq. (6).(5,16)

NTJ ൌ෍ δ൫J୨൯
௡

௝ୀଵ
… (6)

where, δ൫J୨൯ = 1 if J୨ > 0 and δ൫J୨൯= 0, otherwise. 

Experimental Design for A Simulation-Optimization Study 
Firstly, in experimentation stage, the steady-state 

was recognized with Welch's technique.18 A pilot 

Table 2 — Setup time data 

Preceding job type Job TypeA Job TypeB Job TypeC Job TypeD Job TypeE Job TypeF 

Job TypeA 0 Un(2.00, 2.25) Un(2.00, 2.50) Un(2.00, 2.75) Un(2.00, 2.50) Un(2.00, 2.25) 
Job TypeB Un(2.00, 2.25) 0 Un(2.00, 2.25) Un(2.00, 2.50) Un(2.00, 2.75) Un(2.00, 2.50) 
Job TypeC Un(2.00, 2.50) Un(2.00, 2.25) 0 Un(2.00, 2.75) Un(2.00, 2.50) Un(2.00, 2.25) 
Job TypeD Un(2.00, 2.25) Un(2.00, 2.50) Un(2.00, 2.25) 0 Un(2.00, 2.75) Un(2.00, 2.50) 
Job TypeE Un(2.00, 2.25) Un(2.00, 2.50) Un(2.00, 2.25) Un(2.00, 2.75) 0 Un(2.00, 2.50) 
Job TypeF Un(2.00, 2.25) Un(2.00, 2.50) Un(2.00, 2.25) Un(2.00, 2.75) Un(2.00, 2.50) 0 

Legends: Job Typei = Job Type, Un = Uniform distribution 
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study demonstrates that after 5000 jobs, system 
reaches to static state. The simulation model runs for 
thirty replications, finishing 25,000 jobs for 
simulation investigation. Due to the transition phase, 
tasks 1–5000 were abandoned from the simulation 
output. The remaining 20,000 (jobs numbering 
5001–25,000) completion jobs were utilized to assess 
system performance. This phase was followed by the 
use of the one-factor-at-a-time strategy for 
determining the reference line levels and decreasing 
the total number of tests.19 

Results and Discussion  
In the present study, face centered central 

composite design was used.12 Design expert software 
creates fifty trials based on the input constraints and 
their levels. The shop's performance was assessed in 
these design points using Pro-Model® simulation 
software. The experimental design set and average 
response value of NTJ performance measure is shown 
in Table 3. 

Analysis of variance (ANOVA) methods was used 
to propose the regression model between input 
constraints and NTJ; and estimate the legitimacy of 

Fig. 1— Flow chart of a job flow 

Table 3— Experimental design set and output responses of NTJ 
performance measure 

Std R_L %McF MTR_RMcB Ғ R_FL NTJ 

1 0.74 0 1* ͞P 1 0 6035.9 
2 0.9 0 1* ͞P 1 0 6983.9 
3 0.74 0.1 1* ͞P 1 0 5005.9 
4 0.9 0.1 1* ͞P 1 0 6416.6 
5 0.74 0 10* ͞P 1 0 6035.9 
6 0.9 0 10* ͞P 1 0 7061.2 
7 0.74 0.1 10* ͞P 1 0 6235.5 
8 0.9 0.1 10* ͞P 1 0 7315.3 
9 0.74 0 1* ͞P 4 0 78.9 

10 0.9 0 1* ͞P 4 0 159.1 
11 0.74 0.1 1* ͞P 4 0 60.8 
12 0.9 0.1 1* ͞P 4 0 155.3 
13 0.74 0 10* ͞P 4 0 78.9 
14 0.9 0 10* ͞P 4 0 159.1 
15 0.74 0.1 10* ͞P 4 0 122.7 
16 0.9 0.1 10* ͞P 4 0 220.7 
17 0.74 0 1* ͞P 1 6 5201.6 
18 0.9 0 1* ͞P 1 6 6366.3 
19 0.74 0.1 1* ͞P 1 6 6385.9 
20 0.9 0.1 1* ͞P 1 6 7338.4 
21 0.74 0 10* ͞P 1 6 5201.6 
22 0.9 0 10* ͞P 1 6 6366.3 
23 0.74 0.1 10* ͞P 1 6 5867.7 
24 0.9 0.1 10* ͞P 1 6 6972.2 
25 0.74 0 1* ͞P 4 6 10.2 
26 0.9 0 1* ͞P 4 6 19.4 
27 0.74 0.1 1* ͞P 4 6 73.2 
28 0.9 0.1 1* ͞P 4 6 95.9 
29 0.74 0 10* ͞P 4 6 10.2 
30 0.9 0 10* ͞P 4 6 19.4 
31 0.74 0.1 10* ͞P 4 6 30.2 
32 0.9 0.1 10* ͞P 4 6 47.1 
33 0.74 0.05 5.5*P͞ 2.5 3 223.8 
34 0.9 0.05 5.5*P͞ 2.5 3 485.3 
35 0.82 0 5.5*P͞ 2.5 3 192.8 
36 0.82 0.1 5.5*P͞ 2.5 3 432 
37 0.82 0.05 1* ͞P 2.5 3 364.5 
38 0.82 0.05 10* ͞P 2.5 3 306.7 
39 0.82 0.05 5.5*P͞ 1 3 6483.4 
40 0.82 0.05 5.5*P͞ 4 3 15.5 
41 0.82 0.05 5.5*P͞ 2.5 0 770.6 
42 0.82 0.05 5.5*P͞ 2.5 6 269.5 
43 0.82 0.05 5.5*P͞ 2.5 3 293.5 
44 0.82 0.05 5.5*P͞ 2.5 3 293.5 
45 0.82 0.05 5.5*P͞ 2.5 3 293.5 
46 0.82 0.05 5.5*P͞ 2.5 3 293.5 
47 0.82 0.05 5.5*P͞ 2.5 3 293.5 
48 0.82 0.05 5.5*P͞ 2.5 3 293.5 
49 0.82 0.05 5.5*P͞ 2.5 3 293.5 
50 0.82 0.05 5.5*P͞ 2.5 3 293.5 

ANOVA Model – Fitness and Adequacy Verification 
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regression model. A quadratic model was suggested 
by Design Expert® 12.0 software for NTJ 
performance measure at 95% confidence level to 
explain the system behaviour. ANOVA table for NTJ 
is shown in Table 4. The ANOVA table demonstrates 
that F-value of model is 602.24 at p-value less than 
0.05, demonstrates that model is significant. It 
demonstrates that R_L, %McF, Ғ, and R_FL are 
significant terms for NTJ. Further, it represents that 
R_L and Ғ, %McF and R_FL, MTR_RMcB and 
R_FL, and Ғ and R_FL are significant interaction 
terms, while Ғ and R_FL are identified as significant 
quadratic terms for NTJ. 

Further, R2 value for NTJ performance measure is 
0.9976. It demonstrates that only 0.24% of total 
variation cannot explain by model. Therefore, model 
accuracy is good. It also demonstrates that change 
between predicted and adjusted R2 values is less 
(i.e., less than 0.0047) for NTJ. Because of this, 
models are very predictable. There is a practical treaty 
between them, proving the fitness of simulation data 
to generated mathematical model. Further, it also 
demonstrates that adequate precision value is 
63.9014, which means model navigates design space. 
The final response equation for NTJ is represented 
below. 

NTJ = 98.4783 + 52.8235 × R_L + 18.4526 × %McF + 
0.544066 × MTR_RMcB + −68.1304×Ғ + −1.29193 × 
R_FL + 17.1742 × R_L × %McF + −0.168045 × R_L × 
MTR_RMcB + −9.16845 × R_L × Ғ + −1.4387 × R_L 
× R_FL + 1.02532 × %McF × MTR_RMcB + 1.87092 
× %McF × Ғ + 8.70791 × %McF × R_FL + −0.0414098 

× MTR_RMcB × Ғ + −0.0723118 × MTR_RMcB × 
R_FL + −0.239206 × Ғ × R_FL + 3.29189 × R_L ^2 + 
−455.448 × %McF ^2 + −0.00846399 × MTR_RMcB 
^2 + 10.5576 × Ғ ^2 + 0.401651 × R_FL^2  … (7) 

A normal probability plot (Fig. 2) demonstrates 
that the model is suitable for evaluating NTJ 
performance indicators. All performance metrics' 
residuals congregate close to a straight line, showing 
that the mistakes follow a normal distribution 
regularly. As a result, the regression model closely 
matches the data. 

Response Surface Analysis 
Interaction effect plot for NTJ on input parameters 

is shown in Fig. 3 (a–d). Interaction effect plot 

Table 4 — ANOVA for NTJ 

Source Sum of Squares df Mean  
Square 

F-value p-value Remark 

Model 50755.58 20 2537.78 602.24 < 0.0001 significant 
A- R_L 208.03 1 208.03 49.37 < 0.0001 
B-%McF 46.67 1 46.67 11.07 0.0024 
D-Ғ 43013.84 1 43013.84 10207.6 < 0.0001 
E-R_FL 118.42 1 118.42 28.1 < 0.0001 
AD 38.74 1 38.74 9.19 0.0051 
BE 54.6 1 54.6 12.96 0.0012 
CE 30.5 1 30.5 7.24 0.0117 
DE 37.08 1 37.08 8.8 0.006 
D² 1395.66 1 1395.66 331.2 < 0.0001 
E² 32.32 1 32.32 7.67 0.0097 
Residual 122.2 29 4.21 
Lack of Fit 122.2 22 5.55 
Pure Error 0 7 0 
Cor Total 50877.78 49 

R² = 0.9976, Adjusted R² = 0.9959, Predicted R² = 0.9912, Adeq Precision = 63.9014 

Fig. 2— shows the normal probability plot for NTJ 
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between R_L and Ғ demonstrated in Fig. 3 (a). It 
shows that lower value (LV) of NTJ is attained at 
lower level (LL) of R_L, and higher level (HL) of Ғ, 
i.e., 0.74, and 4, receptively. This is because, as
operating time increases, the amount of time that
passes between scheduled maintenance tasks
increases, and job's deadline time rises. Therefore,
tasks are not held up while waiting for the machine to
finish. Hence NTJ decreases. A similar trend for R_L
and tightness factor have been observed in past
study.12

Interaction effect between %McF and R_FL is 
demonstrated in Fig. 3(b). It demonstrates that LV of 
NTJ is obtained at LL of %McF and middle level 
(ML) of R_FL, i.e., 0% and R_FL4, respectively. This
is because no machine breakdown has occurred, and
there are other paths available to complete the task.
Therefore, tasks are not held up while waiting for the
machine to finish. Hence NTJ decreases. As R_FL

rise from R_FL4 to R_FL6, NTJ increases again. The 
fixed configuration and intermachine rivalry in job 
shop reduced the improvement in NTJ. Hence, 
increasing R_FL improve the system performance 
(i.e., NTJ) up to certain limit only, i.e., R_FL4. A 
similar observation for RF and McB have been 
observed in the literature.6,16

Interaction effect between MTR_RMcB and R_FL 
is demonstrated in Fig. 3(c). It demonstrates that LV of 
NTJ is obtained at LL of MTR_RMcB, and ML of 
R_FL, i.e., 1 × P and R_FL4, respectively. This is 
because of decrease in machine waiting time and 
availability of alternate job processing paths. 
Therefore, tasks are not held up while waiting for the 
machine to finish. Hence, NTJ decreases. A similar 
change in RF has been observed in past study.16  

Interaction effect between Ғ and R_FL is 
demonstrated in Fig. 3(d). It demonstrates that LV of 
NTJ is obtained at HL of Ғ, and ML of R_FL, i.e., 4 

Fig. 3 — (a) Interaction plot of R_L & Ғ (b) Interaction plot of %McF & R_FL (c) Interaction plot of MTR_RMcB & R_FL (d) Interaction plot 
of Ғ & R_FL 
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and R_FL4, respectively. This is because of rise in 
deadline time of jobs and availability of alternate job 
processing paths. Because of this, tasks don't have to 
wait around for the machine to finish processing 
them, and they may be completed in a timely manner. 
Hence, NTJ falls. A similar trend for RF and tightness 
factor have been observed in literature.12,16

Optimization Using Desirability Approach  
The desirability method takes the raw response 

value from various performance metrics and converts 
it into a scalar number between 0 and 1 known as the 
desirability value (di) for that metric. The nature of 
the output response determines whether these 
numbers are organised as a maximum, minimum, or 
goal. The relative relevance of the objective function 
is represented by weight (w), which is likewise related 
with di. w may be given a value more than or equal to 
one, or it can be configured to be less than one. When 
w = 1, the desirability function is linear, but when w > 
1, the attention is on the goal and when 0 < w < 1, the 
emphasis is on something other than the target. For 
minimum response di is computed by Eq. (8).(19)

𝑑௜ ൌ  ൝
1     𝑦௜ ൏ 𝑇௜

ሺሺ𝑈௜ െ 𝑦௜ሻ ሺ𝑈௜ െ 𝑇௜ሻ⁄ ሻ௪       𝑇௜ ൑ 𝑦௜ ൑ 𝑈௜
0     𝑦௜ ൐ 𝑇௜

 ... (8) 

where, Ui represents upper limits of response yi, and 
Ti represents target value. 

Obtaining the desirability for NTJ is the initial 
stage, followed by maximizing desirability and 
determining the optimum value. Ten solutions are 
produced to find the actual optimum solution, and any 
of them con be considered as they all show the same 
desirability (Table 5). 

To check the validity of the optimization results, 
confirmatory experiments were carried out at the 
parameter settings corresponding to solutions No. 1, 

5, and 8 in Table 5. The simulation results for the 
confirmatory experiments were 8, 8, and 10, 
respectively, for solutions No. 1, 5, and 8. Based on 
these findings, the difference between the predicted 
and actual outcomes is less than 5%, which confirms 
the excellent reproducibility of the results. 

Conclusions  
The research work reveals that a second-order 

regression model is obtained to quantify the 
relationship between input parameters and NTJ. The 
results show excellent model predictability, and there is 
a reasonable agreement between them, proving the 
fitness of the simulation data to the generated 
mathematical model. The main effects of R_L, %McF, 
Ғ, and R_FL; interaction between R_L and Ғ, %McF 
and R_FL, MTR_RMcB and R_FL, and Ғ and R_FL; 
and quadratic effects of Ғ and R_FL, have significant 
impact on NTJ performance measure. Furthermore, Ғ 
appeared as the most important influencing factor for 
NTJ, as shown by the higher F value (i.e., 43013.84) in 
ANOVA analysis. The integrated simulation-
optimization approach predicts the optimal condition 
for system performance optimization. The 
confirmatory data demonstrate that error is less than 
5%, confirming model can be used for future 
computations. The aforementioned findings will assist 
production managers in planning and scheduling 
flexible job shops in order to satisfy customer demand 
on time. Task cancellation, limited buffer capacity, 
transportation delay, and job pre-emption are only few 
of the additional shop aspects that may be taken into 
account to further develop the current work. 
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Table 5 — Optimal system parameters obtained using the desirability approach 

Number R_L %McF MTR_RMcB Ғ R_FL NTJ Desirability 

1 0.76 0.099 1.054 3.695 3.514 10 1 
2 0.874 0.003 4.895 3.514 4.23 7 1 
3 0.743 0.085 5.443 3.622 4.063 10 1 
4 0.786 0.028 8.99 3.768 3.865 5 1 
5 0.778 0.045 8.735 3.696 3.459 9 1 
6 0.755 0.073 9.997 3.618 4.954 10 1 
7 0.868 0.005 2.428 3.688 4.743 7 1 
8 0.74 0 10 4 6 1 1 
9 0.87 0.009 9.871 3.489 5.531 4 1 
10 0.743 0.077 8.327 3.709 4.116 9 1 
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