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Mould preparation is an important phase in the injection moulding process. The surface roughness of the mould affects 
the surface finish of the final plastic product. Quality product with a better production rate is required to meet the 
competition in the present market. To achieve this objective, manufacturers try to select the best combination of parameters. 
Multi-objective optimization is one such technique to obtain the optimal process parameters that give better quality with a 
good production rate. The current paper describes the application of Multi-Objective Genetic Algorithms (MOGA) on the 
Artificial Neural Network (ANN) model for pocket milling on AA7075. Through the application of ANN with MOGA 
minimum Surface Roughness (SR) is achieved with a better Material Removal Rate (MRR). From the confirmation 
experiments, it is evident that follow-periphery tool path gives a better surface finish with higher MRR and the percentage 
error observed is 1.9553 and 1.8282 respectively. 
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Introduction 
Pocket milling is the process used in mould 

preparation in the plastic industry. Plastic product is 
accepted when the surface quality of the product is 
fine. Surface quality is dependent on the surface 
roughness of the mould used for injection moulding. 
To generate the mould pockets different tool 
trajectories are used, which are broadly classified as 
linear and non-linear tool paths.1 Selection of tool 
path along with optimal process parameters leads to 
efficient performance in mould preparation with 
minimum surface roughness.2 Though several 
machining parameters influence the machining 
conditions, Spindle speed, table feed, and depth of cut 
influence the surface integrity of the workpiece.3 Path 
followed by the tool while generating the pocket 
profiles affect the surface roughness.4 In addition to 
these parameters, proper selection of stepover and 
tool path strategy selected to generate pockets also 
influences the surface roughness.5 Many researchers 
tried to optimize the process parameters for better 
surface quality and MRR. With the application of 
Response surface methodology (RSM) Alauddin et al. 

developed a model to predict surface roughness. From 
the study, they have identified Feed is the dominating 
factor for surface roughness.6 

Routara et al. studied the influence of tool 
trajectories on surface roughness by modeling with 
RSM. They have identified that selection of proper 
tool path affects the surface roughness.7 Bouard et al.  
developed a toolpath computation method with a 
Uniform Cubic B-spline curve.8 A Constraint-based 
optimization algorithm is applied to the model to 
produce the pocket with less energy. Rajyalakshmi and 
babu studied the influence of process parameters to 
minimize surface roughness in Al7075 alloy using 
response surface methodology.9 Several researchers 
applied modern and Evolutionary algorithms to 
optimize machining parameters to get minimum 
surface roughness.10–17 

Multiple Response Optimization (MRO) is a new 
technology in manufacturing that selects optimal 
settings to save machining cost and time. Gök et al. 
discovered that the tool's trajectory, in addition to the 
cutting parameters, influences tool acceleration.18 
They investigated the effect of cutting settings and 
tool routes on tool acceleration, which directly 

————— 
*Author for Correspondence
E-mail: j.rajyalakshmi@gmail.com



J SCI IND RES VOL 81 SEPTEMBER 2022 
 
 

912 

influences surface roughness, through testing. Gjelaj 
et al. used multi objective GA (MOGA) to improve 
milling settings.19 According to the experimental data, 
it provides Pareto output that optimise the machining 
settings and have accurateness in the trail values. 
Zubaidi et al. investigated the use of ANN in milling 
parameter analysis and optimization.20 They 
discovered that when compared to standard methods, 
ANN predicts superior values. Zain et al. used three 
types of tools to estimate surface roughness using a 
neural network model (ANN) feed-forward model.21 
In the network, they employed various configurations 
of hidden layers. They concluded from their 
experimental results that increasing the number of 
hidden neurons can enhance surface roughness. 
Ghosh et al. used ANN and RSM to improve 
machining settings by modelling surface roughness.22 
They also used particle swarm optimization (PSO) 
method to solve regression equations generated by 
RSM. Through confirmation experiments, they 
discovered a high degree of agreement between the 
trail and anticipated values of SR. Venkatesh and 
Suresh Kumar used ANN and simulated Annealing to 
predict and optimise the cutting conditions for the 
lowest surface roughness (SA).23 comparing the 
projected values of RSM to that of experimental 
values, they discovered that ANN can be well adapted 
for parameter modeling and optimization. Yanis et al. 
used RSM and ANN to improve process parameter in 
side milling with an environmental friendly coolant.24 
They found from the experimental data that the ANN 
simulation is in excellent accordance with the 
verification test results. 

The majority of the studies on single response 
optimization were found in the aforementioned 
papers. Pocket milling has received very little 
attention, with step over being one of the driving 
elements. The study can also take into account the 
impact of tool trajectories on responses. One of the 
best methods for enhancing process parameters has 
been proven to be ANN. Artificial neural networks 
can be effectively used for multi-response 

optimization when paired with GA. As a result, the 
goal of the current study is to optimise the process 
parameters by applying ANN and MOGA to the 
experimental data obtained from the two tool 
movements- Follow Periphery (FP) and ZigZag (ZZ). 
 

Materials and Methods 
 

Materials 
Aluminium and its alloys are the commonly used 

materials in many fields of engineering. Their 
properties such as lightweight, ease of machinability, 
corrosion resistance etc., make them qualify for 
diversified applications.25 

AA7075 with a specimen size of 80 × 70 mm with 
a depth of 10mm is used in the present study. AA7075 
is an aluminium alloy with Zinc as the primary 
constituent. It has good fatigue strength, when un-
heat-treated, it has high tensile and yield strengths. 
But it has low weld ability and average machinability. 
Because of its high strength, thermal properties, low 
density, and specific strength, AA7075 finds 
applications in marine, aircraft building, automotive 
and moulding industries. The composition of the 
selected material is given in Table 1.   
 

Experimental Procedure  
Design of Experiments (DOE) is a statistical 

approach for deciding experiments required for high 
and more complex engineering issues economically. 
One such approach is Response Surface Methodology 
(RSM), which reduces the experimental runs required 
to obtain maximum data from the components and 
levels of selected parameters. For determining the 
number of experimental runs in RSM, two models are 
available: Central Composite Design (CCD) and Box-
Behnken Design (BBD). When compared to CCD, the 
BBD is more cost effective when the experiment 
contains three components and three levels.26 

The Box-Behnken model produces consistent 
findings and uses separate quadratic equations to 
determine coefficients.27 They do not, however, show 
the results of a factorial experiment. The BB model 
has factors at three levels. The parameter 
configurations are located in the process space's 
midpoints and in the centre. To produce design 
combinations, each element must have three levels. 

Table 1 — Chemical composition of AA7075 

Element Aluminium (Al) Zinc (Zn) Magnesium (Mg) Copper (Cu) Others 

% Comp. by wt. 90–92% 5.6–6.1% 2.1–2.5% 1.2–1.6% Less than 0.5% 
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When compared to central composite designs, the 
designs have limited orthogonal blocking potential. 

ANN modelling is used to the experimental data. 
The modelled data is used to generate second-order 
regression equations. The MATLAB optimization 
toolkit is used to apply multi-objective genetic 
algorithms to these regression equations. The process 
for multi-objective optimization is depicted in Fig. 1 
by a flow chart. Data predicted from ANN is also 
presented to ANOVA to identify the most influential 
parameter for the outputs in two tool trajectories. 
 
Modeling and Simulation  

Siemens Nx.11 software is used to model and 
simulate the specified pocket milling profile. To test 
the tool progressing directions, two tool path 
techniques viz., zigzag and follow periphery, are 
mimicked in this model. Simulation of the tool paths 
id depicted in Fig. 2. Following simulation, NC code 
for each approach is created independently. 
 
Experimental Factors 

Despite the fact that there are various modifiable 
factors, the current study uses speed (RPM), feed 
(mm/min), and step-over (percent). From literature 
search, production hand book, and trial experiments, 
three levels for each variable are identified. 

Responses include surface roughness and Material 
Removal Rate (MRR). The levels and codes of 
controllable factors are depicted in Table 2. 
 
Experimental procedure 

Because there are three parameters, each with three 
levels, the series of experimental trials was 
determined via Box-Behnken design in RSM. Design 
Expert is used to construct experimental runs using 
programmed run orders, as shown in Table 3. 
 

Experimental Setup 
Pocket machining operations were performed using 

an AMC MCV-350 Vertical Machining Center with a 
Fanuc controller. Pockets are produced on the 
selected specimen with a 6 mm diameter four-flute 

 
 

Fig. 1 — Procedural map 

 
 

Fig. 2 — Tool path simulation in a) Zigzag and b) Follow 
periphery tool paths 
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tool having tungsten carbide coating. Experiments 
were performed as per the run order shown in Table 3. 
Surface roughness is measured with the Mitutoyo Surf 
test SJ-210. The sample length is set at 2.5 mm. 
Surface roughness is defined as the average of five 
sample lengths (Ra).  With a precision balance having 
a least count of 0.01 gm, the work piece's weights 
prior to and after machining were measured. Equation 
1 is used to compute the Material Removal Rate 
(MRR): 

 
𝑀𝑅𝑅 ൌ

௪మି௪భ

௡
                  … (1) 

 
where, 𝑤ଵ,𝑤ଶindicate weights of the specimen before 
and after machining respectively. ‘n’ indicates the 
processing time in seconds to generate the profile.  
 
Results and Discussion 

Experimentation was carried out in accordance 
with the previous discussion. At the end of each 
experiment, the surface roughness measured is 
entered in the respective table. Before and after 
machining, the work piece is weighed. To determine 
MRR, the division of absolute variation of weights 
with machining time of the respective experiment is 
calculated. Similar procedure is followed for the two 
tool configurations. The values obtained for both 
outcomes for the two specified tool trajectories are 
presented in Table 4. 

 
Analysis of Experimental Data 

The experimental results are analyzed using design 
expert software to identify the relation between input 
variables and the selected responses. Regression 
equations are generated and theoretical response 
values are calculated. The error observed is less than 
five percent between the predicted and experimental 
values. ANOVA is applied to the experimental data to 
identify the most influencing factor for SR and MRR 
in both tool trajectories. The F-value in the ANOVA 
results indicate the influence of the parameters on the 
response. It is observed that for surface roughness in 

FP tool path the F- value for speed (103.44) is the 
highest compared to other parameters. Similarly, for 
MRR, the F-value against step over is 1151.33 which 
is the highest value than that of speed and feed. For 
zigzag tool path, F-value for step over in the SR 
analysis is observed as 79.16 and in MRR analysis  
F-value for feed is 86.51 which are the highest values 
compared to other parameter f- values.  The mean 
effect plots shown in Fig. 3 also indicate that speed is 
the most influencing factor for surface roughness in 
follow periphery tool path, whereas step over is 
influencing MRR. For the ZZ tool path Surface 
roughness is affected by step over and MRR is 
influenced by Feed. 
 
Modelling with ANN 

In the present scenario, ANN is gaining more 
attention in the field of modelling and optimization 
due to its efficiency in improving the results. The 
ANN model consists of artificial neurons connected 
by hidden layers from the input to the output nodes. 
The response is obtained as a non-linear function 
generated with assignment of weights to each node in 
the inputs. With reference to training data sets, the 
weights linked with neurons may be adjusted. ANN 

Table 2 — Range of process parameters with codes 

Symbol Machining characteristics  
selected for study 

Units Levels of selected parameters Responses of interest 

1 2 3  

S Speed RPM 3000 4000 5000 Surface roughness (microns) 
Material removal rate (g/s) F Feed mm/min 500 1000 1500 

SO Step over % 20 40 60 
Level codes −1 0 1 

 

Table 3 — Order of experimental run 

Std.  
order 

Experimental  
order 

S 
 (RPM) 

F  
(mm/min) 

SO  
(%) 

1 7 −1 −1 0 
2 4 −1 −1 0 
3 6 −1 1 0 
4 14 1 1 0 
5 3 −1 0 −1 
6 9 1 0 −1 
7 2 −1 0 1 
8 1 1 0 1 
9 5 0 −1 −1 
10 11 0 1 −1 
11 10 0 −1 1 
12 12 0 1 1 
13 8 0 0 0 
14 15 0 0 0 
15 13 0 0 0 
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modelling also be employed in situations with many 
variables. In ANN architecture, feed forward and 
feedback networks are often applied.28 Feed forward 
neural networks are those in which the signal flows 
from input to output direction. The signal in the 
feedback network moves in both directions to 
generate loop in cyclic networks. 

Because the replies have competing aims, the 
experimental data collected from the FP tool 
trajectory is normalised to generate an efficient 

network model. The trial-and-error approach is 
used in ANN to select the suitable model useful for 
optimisation. Minimum MSE (Mean Square Error) 
is a key markers of a robust ANN model. By 
employing the Levenberg-Marquardt approach to 
train the data, a superior ANN model is created 
with the given data set. After training, the network 
receives three inputs and produces two outputs. An 
network model with six neurons in the hidden layer 
is depicted in Fig. 4. 

 
 

Fig. 3 — ANOVA plots for the responses (a) Follow periphery surface roughness (FP) (b) FP material removal rate (c) Zigzag (ZZ)
Surface roughness (d) ZZ Material removal rate tool paths 

Table 4 — Experimental results for the two tool paths 

Experiment. no FP ZZ 

Surface roughness 
(microns) 

Material removal  
rate (g/s) 

Surface roughness  
(microns) 

Material removal rate 
(g/s) 

1 1.266 0.04175 1.251 0.05221 
2 1.088 0.07615 1.032 0.08279 
3 1.528 0.0998 0.9383 0.09843 
4 1.155 0.05566 0.95 0.06327 
5 1.112 0.23524 1.137 0.1354 
6 1.425 0.10667 1.522 0.11467 
7 0.934 0.06238 1.229 0.06936 
8 0.792 0.15563 1.361 0.08651 
9 1.421 0.10688 1.506 0.11467 
10 0.79 0.03984 0.834 0.05039 
11 1.384 0.10936 1.5 0.11881 
12 1.322 0.22818 0.98 0.09635 
13 1.276 0.02434 0.91 0.04435 
14 0.938 0.0998 1.033 0.044225 
15 1.103 0.0835 0.767 0.05584 
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The MSE determines the number of neurons 
necessary in the hidden layer for optimal network 
training. By varying the number of neurons in the 
hidden layer as 5, 6, and 7 the model is trained to 
identify the network with minimum MSE value.29,30 
According to the performance graphs in Fig. 5, 
network with six neurons in the hidden layer is 
showing least mean square error. The MSE values for 
neurons 5, 6, and 7 are also provided as 0.050997, 
00027661, and 0.0073642, respectively. As a result, 
to train the data set, the neural network with 6 neurons 
in the hidden layer is used. 

The experimental data used as input to the model 
may be divided into three categories: training, 
validating, and testing data. To train the model, create 
a training set. Validation is configured to halt training 
when there is no progress of network output and 
testing is set to verify anticipated values and assess 
error in comparison to actual values.30 Training, 
Validation and Testing data sharing is done based on  
the trails  by changing the training data percentage in 
MATLAB Neural Network.31 Three kinds of training, 
verification, and assessment data sets are used to 
assess the network's capabilities. The R-value  
that shows the performance of the network for the 
selected three choices for six neurons is displayed  
in Fig. 6. 

Compared to testing and validation of 15% and 
20%, the R-value for 10% testing and validation data 
is much higher (0.98451) as shown in Fig. 6. This 
might be due to the dataset provision of intensive 
training samples (80%) for adequate model training. 
As a result, the Neural Network having six hidden 
layer neurons with 80% training, 10% validation, and 
10% testing data set is deemed best. 

The experimental data collected from the zigzag 
tool trajectory is also subjected to ANN modelling, 
and the ANN findings produced for the two factors in 
both tool paths are displayed in Table 5. 

For both the outcomes an analytical relationship is 
established with design expert software, using the 
collected results. According to the ANOVA findings 
of ANN models, speed for SR and step over for MRR 
in FP tool path, stepover for SR and feed for MRR in 

ZZ tool trajectory are identified as impacting factors. 
The ANOVA plots are depicted in Fig. 7. 
 

Multi Objective Optimization 
According to prior research, Genetic Algorithms 

(GA) are one of the best optimization strategies for 
multi-objective optimization.29 The concept of GA is 
derived from natural selection and survival of the 

 
 

Fig. 5 — Performance plots for with (a) 5 Neurons, (b) 6 Neurons
and (c) 7 Neurons in the hidden layer of ANN modeled data 

 
 

Fig. 4 — ANN model with 6 neurons 
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fittest. Solutions that meet a specified for the object 
function requirement are passed on to the successor 
stage. Otherwise, the solution is rejected through the 
genetic operators “Reproduction, Cross over, and 
Mutation”. After determining the fitness function, the 
starting population is chosen from the population and 
exposed to the genetic operators. Many generations are 
examined using genetic operators and fitness functions 
to find the best solution. When the solution set's value 
does not improve, the solution search is discontinued. 
The MAT LAB toolkit is used to do multi-objective 
optimization using GA. The genetic operators chosen for 
multi-objective optimization for both tool routes are 
shown in Table 6, where, Pcp is the crossover probability 
and PM is the mutation probability. 

Optimization with ANN Model using Multi-
Objective Genetic Algorithms 
Second-order response equations formulated with the 
theoretical values of the Neural Network model are 
subjected to multi-response optimization using  
the MATLAB optimization toolbox. From the toolbox, 
the Multi-Objective Genetic Algorithm (MOGA) is 
selected and the objective function is defined as follows. 
 

 
 

Fig. 6 — Overall R values for (a) 20% Validation (b) 15% validation (c) 10% validation 
 

Table 5 — Error calculation of the responses for ANN and experimental values inboth the tool paths 

Run ANN Model Error Percentage 
FP ZZ FP ZZ 

 SR 
(microns) 

MRR 
(g/s) 

 SR 
(microns) 

MRR 
(g/s) 

 SR 
(microns) 

MRR 
(g/s) 

 SR 
(microns) 

MRR 
(g/s) 

1 1.28371 0.04216 1.24919 0.05281 1.3991 0.9820 0.1447 1.1492 
2 1.06005 0.07438 1.03166 0.07931 2.5689 2.3244 0.0329 4.2034 
3 1.53173 0.10414 0.95837 0.09352 0.2441 4.3487 2.139 4.9883 
4 1.19945 0.05703 0.94802 0.06186 3.8485 2.4614 0.2084 2.2285 
5 1.13173 0.22674 1.12221 0.13020 1.7743 3.6133 1.3008 3.8405 
6 1.41734 0.10757 1.49343 0.11324 0.5375 0.8437 1.8771 1.2471 
7 0.93474 0.06469 1.16857 0.06943 0.0792 3.7031 4.9170 0.1009 
8 0.81537 0.16156 1.30419 0.08487 2.9508 3.8103 4.1741 1.8957 
9 1.41734 0.10757 1.49343 0.11324 0.2576 0.6456 0.8347 1.2471 

10 0.81566 0.03945 0.83280 0.05151 3.2481 0.9789 0.1439 2.2227 
11 1.41734 0.10757 1.49343 0.11324 2.4090 1.6368 0.4380 4.6882 
12 1.36166 0.22053 1.00621 0.10108 3.0000 3.3526 2.6745 4.9092 
13 1.21328 0.02461 0.94558 0.04626 4.9154 1.1093 3.9099 4.3067 
14 0.97652 0.09976 1.00299 0.04519 4.1066 0.0401 2.9051 2.1820 
15 1.10604 0.08397 0.75546 0.05338 0.2756 0.5629 1.5046 4.4054 

Average Percentage Error 2.10763 2.0275 1.81365 2.9077 

Table 6 — Genetic operators values selected 

Genetic operational parameters Value selected 

Population  100 
Pcp 80% 
PM 10% 
Generations 200 
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For follow periphery trajectory 
 

Minimize f1 = 1.42 + 0.146S − 0.0324F − 0.013SO 
− 0.1316SF + 0.1481SSO + 0.1348FSO − 0.0608S2 − 
0.1157F2 − 0.2708SO2 

Minimize f2 = − (0.1076 + 0.0133S + 0.02643F + 
0.0567SO + 0.00547SF + 0.01714SSO + 0.03613FSO 
− 0.00965S2 − 0.03902F2 − 0.03719SO2) 
 
For zigzag trajectory 

Minimize f1 = 1.493 + 0.00896S − 0.00798F + 
0.1085SO − 0.1285SF − 0.1436SSO + 0.0586FSO − 
0.18256S2 − 0.2304F2 − 0.2865SO2   

Minimize f2= − (0.11324 + 0.0091S + 0.0173F + 

0.0144SO + 0.00438SF − 0.00243SSO + 
0.023841FSO − 0.02013S2 − 0.0276F2 − 0.01344SO2) 

where, f1 and f2 are the surface irregularity and 
MRR. For the control factors speed, feed, and 
stepover, the bounds of the parameters are [−1, 1]. 
The parameter set is comparable to that of the 
regression model. The Pareto output values 
achieved are displayed in Table 7 for the Neural 
Network model. The Pareto results obtained from 
MOGA are shown in Fig. 8 for both the tool paths. 

The coded parameter values are decrypted, and 
verification experiments for randomly picked Pareto 
outcomes are conducted. Four validation experiments 

 
 

Fig. 7 — ANOVA plots for the responses in ANN for the two tool paths (a) FP surface roughness; (b) FP material removal rate 
(c) ZZ surface roughness (d) ZZ material removal rate 
 

Table 7 — Pareto Results of responses for both the tool paths 

Run FP ZZ 
SR (microns) MRR (g/s) SR (microns) MRR (g/s) 

1 0.74861 0.22375 0.69055 0.11868 
2 0.94562 0.28338 1.14975 0.13079 
3 0.94036 0.27816 1.14975 0.13079 
4 0.71194 0.21843 1.13357 0.13068 
5 0.84839 0.25134 0.76982 0.12185 
6 0.86182 0.25353 0.94968 0.12793 
7 0.90198 0.26505 0.69055 0.11868 
8 0.82603 0.24579 0.99353 0.12886 
9 0.69057 0.21457 0.79946 0.12281 
10 0.72181 0.22039 1.08767 0.13042 
11 0.84135 0.24901 1.05747 0.12999 
12 0.88175 0.26011 0.84012 0.12466 
13 0.70058 0.21666 0.92068 0.12629 
14 0.73159 0.22357 0.92446 0.12733 
15 0.89296 0.26214 0.86460 0.12528 
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are conducted for both the tool trajectories. For FP 
tool path the validation experiments are conducted by 
selecting minimum surface roughness values and for 
zigzag tool path, medium value surface roughness is 
taken as reference. The confirmation test results are 
shown in Table 8. 

From the Pareto results, it is observed that surface 
roughness and material removal rate in follow 
periphery tool path is better than that of the zigzag 
tool path. From the Pareto graph also, it is evident that 
the FP tool trajectory can be selected for better 
surface finish and material removal rate. The 
percentage error observed is shown in Fig. 9. 

 
 

Fig. 8 — Pareto values of neural network models for tool paths (a) Follow periphery (b) Zigzag 
 

 
 

Fig. 9 — Comparison of validation test and predicted values for ANN model with multi-objective GA (a) FP surface roughness, (b) FP 
material removal rate, (c) ZZ surface roughness, (d) ZZ material removal rate   
 

Table 8 — Error calculations of with pareto and verification experimental results 
Run Pareto results Confirmation Expt. results Percentage error 

FP ZZ FP ZZ FP ZZ 
SR 

(microns) 
MRR 
(g/s) 

SR 
(microns) 

MRR 
(g/s) 

SR 
(microns) 

MRR 
(g/s) 

SR 
(microns) 

MRR 
(g/s) 

SR 
(microns) 

MRR 
(g/s) 

SR 
(microns) 

MRR 
(g/s) 

1 0.7486 0.2238 0.9497 0.1279 0.7204 0.2297 0.9720 0.1230 3.7723 2.6797 2.3537 3.8687 
2 0.7119 0.2184 0.9935 0.1289 0.7297 0.2206 0.9730 0.1230 2.4974 1.0129 2.0694 4.5731 
3 0.7218 0.2204 0.9207 0.1263 0.7291 0.2254 0.9571 0.1225 1.0101 2.2723 3.9543 2.9688 
4 0.7316 0.2236 0.9245 0.1273 0.7276 0.2206 0.9573 0.1221 0.5413 1.3478 3.5496 4.1452 

Average error 1.9553 1.8282 2.9817 3.8889 
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According to the confirmation test findings, the 
mean error percentage for surface roughness and 
material removal rate is 1.9553 and 1.8282 for the FP 
tool path and 2.9817 and 3.8889 for the Zigzag tool 
trajectory. 
 
Conclusions 

The current work used the Response Surface 
Method in conjunction with ANN and multi-objective 
optimisation, to discover the best combination of 
parameters in pocket machining of AA7075 using two 
tool path approaches. The following conclusions may 
be drawn from the studies: 

 
1. While speed for surface roughness and step over 

for material removal  rate are seen as influencing 
variables from ANOVA for individual responses 
in the FP tool route, stepo ver for surface 
roughness and feed for material removal  rate are 
identified as the main influencing factor in both 
tool paths. 

2. The R2 values of the network models are 0.9597, 
0.9641, 0.874, and 0.9437, illustrating the 
effective association between the ANN model's 
input and output parameters. 

3. Multi-response optimization values for surface 
roughness and material removal rate produced 
using Genetic Algorithms for both tool path 
techniques are confirmed using confirmation 
experiments done at randomly selected parameter 
values of the Pareto findings. 

4. When compared to ZZ values, the mean error 
observed for follow periphery surface roughness 
is 1.9553 percent and MRR is 1.8282 percent for 
the ANN model, and confirmation experiments 
show that the anticipated values accord well with 
the experimental results. 

5. The study shows that, while the zigzag tool route 
approach produces superior surface roughness, 
the variance in the surface integrity value of the 
Pareto outcomes is higher than that of the 
followperiphery tool path, but the MRR is greater 
in the followperiphery tool movement. As a 
result, the follow periphery trajectory of the tool 
is recommended for AA7075 to save 
manufacturing costs. 

The combination of multi-objective GA with 
artificial neural network model yields a global 
outcome to the given objective function. Optimisation 
of process variables yields better results combined 

with production quality to minimize machining time 
and hence production cost. 
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