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Current industrial applications of synchrophasors in intelligent grids depend to a great extent on highly trustable 

measurements, mainly during dynamic conditions of a power system, like a power swing which exhibits simultaneous 

variations of amplitude and phase in both voltage and current. This work presents the assessment of the performance of a 

novel synchrophasor technique following tests of the dynamic section of the IEEE Std. C37.118.1-2011, which requests 

testing the simultaneous variations of amplitude and phase. 
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Introduction 

Control and observability of power flow in an 

interconnected power system are some of the main 

drivers for using reliable synchrophasor 

measurements in intelligent grids
1-5

. Different 

techniques of synchrophasor measurement devices for 

use under dynamic state are well described. Early 

approaches related to the Discrete Fourier Transform 

(DFT)
6
.Some work on the use of synchrophasors for 

dynamic applications, like the Taylor expansion 

model based on least-squares method for convergence 

is well known
7
.The Taylor-Kalman-Fourier transform 

is used reporting satisfactory results claiming to 

deliver synchrophasor estimators in one single 

processing cycle using a linear transformation
8
. 

However, very few works found in literature that 

analyze power system during dynamic conditions are 

suitable to be implemented in a physical instrument 
9-

10
.In this work, an improved measurement technique 

for instantaneous frequency of a time varying 

sinusoidal signal is presented. The main contribution 

is, that he enhanced technique allows for the 

measurement of simultaneous variations of amplitude, 

phase and frequency that a voltage or current signal 

may undergo during dynamic power system 

conditions. The measuring technique was 

implemented in a processing PXI platform. 

 

Measuring Algorithm 

The synchrophasor technique is based on a pair of 
band-limited and orthogonal FIR filters, supported by 
an adaptive gain algorithm to adapt in real time the 
gain of the filters while keeping fixed their length to 
one cycle of the nominal fundamental frequency. A 

brief insight of the algorithm is shown in figure 1a), 
where x(t) represents either a voltage or current input 
signal. Measurement of a current signal implies a 
robust discriminating technique to extract in real time 
the fundamental frequency from no stationary noise. 
An assessment of the reliability of the measuring 

technique is performed in this work. The input signal 
x(t) is decomposed in its orthogonal components and 
filtered within a narrow bandwidth, where the gain of 
the filters is corrected by a unit-gain adaptive 
algorithm which allows to track the fundamental 
frequency in real time; the final stage calculates the 

estimates of frequency, amplitude and phase. The 
orthogonal decomposition shown in figure 1a), may 
be associated with the orthogonal components of the 
TVE shown figures 1 b) and c), i.e. the real and 
imaginary parts of the signal denoted by xr(t) and xi(t), 
respectively. When a pulse of synchronization arrives 

at the measurement system as in figures 1b), typically 
through a GPS receiver, a pair of reference signals are 
generated: xr(t), and xi(t). At the same time, a 
reference synchronization signal is triggered for the 
rate report. Regarding the proposed technique, if an 
input signal x(t) is applied at its input, the adaptive 

orthogonal filters produce estimations of the 
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orthogonal components of the input signal. The 
estimates denoted by    and     for the real and 
imaginary components, respectively, allow using the 
orthogonal components to estimate the amplitude 
     , phase      , and frequency      . The reference 
and the estimated orthogonal components are used to 

estimate the TVE, FE and shown in figure 1c) for 
TVE. 

By using the values of the decomposition, it is 

possible to estimate the fundamental frequency as 

shown in Equation (1): 
 

      
               

        
     

  
 

     
    

 
      

 
           

  … (1) 
 

where       is the instantaneous value of the 

fundamental frequency;     and     represent the 

quadrature and in-phase components of v(t);     and 

     stand for the time derivative of the quadrature and 

in-phase components of x(t). Ts is the value of the 

sampling frequency; finally,    is a one-step forward 

estimate of the fundamental frequency. A quadratic 

model is required in order to automatically estimate 

the fractional frequency deviation compensation, 

being an improvement of the original technique. The 

values for fractional deviation adjustment are:  = 

0.316 x 10
-6

,  = 5.4 x 10
-6

 Hz
-1

, and fk= 6.0477 x 10
-3

 

Hz. The amplitude     , and the phase      
components of the input signal are obtained from 

Equations (2) and (3) respectively, 
 

            
       

   … (2) 
 

            
   

   
   … (3) 

 

When the estimates of the orthogonal components 

are available, the algorithm compares them against 

the reference orthogonal components. The reference 

components are available upon arrival of the GPS 

pulse of synchronization; these reference components 

represent a reference synchrophasor. The algorithm 

delivers report rates (fps) higher than the 

recommended in [20]. Theoretically it is possible to 

report estimates of amplitude, phase and frequency at 

the sampling frequency once the first fundamental 

cycle is completely recorded and processed. In the 

implementation of the technique on a PXI platform 

the reports of the measuring algorithm are fully 

synchronized to the universal coordinated time 

(UTC). The orthogonal band-pass filters extract the 

fundamental frequency component from DC, 

harmonic frequencies and out-of-band additive noise 

components that may be present in the input signal. 

The value of the orthogonal components is corrected 

by a unit-gain algorithm as the frequency of the 

fundamental component may deviate from nominal. 
 

Performance evaluation technique using dynamic section of 

the Std. IEEE C37.118.1-2011 

In order to assess the performance of the proposed 

synchrophasor technique under dynamic conditions as 

established in the IEEE Std. C37.118.1-2011, the 

measuring technique was implemented on a PXI 

platform. This platform contains three modular items, 

a real-time controller (PXI 8119), a GPS receiver and 

timing card (PXI-6683), and a dynamic acquisition 

card based on Delta-Sigma Analog-to-Digital 

Converter (PXI-4462). These three elements can be 

seen in figure 2a). According to the standard the 

indices used for evaluating the performance are the 

 
 

Fig. 1 — Proposed technique for synchrophasor. a) Unit gain 

orthogonal decomposition of an input signal allows measuring its 

amplitude and phase, b) UTC synchronization basic scheme,  

c) TVE composition 
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TVE (Total Vector Error), and the FE (Frequency 

Error) and ROCOF (Rate of Change of Frequency). 

For these tests the fundamental frequency of the input 

signal is set at 60 Hz whereas the sampling frequency 

is 9 kHz, and the rate report is set at 120 frames per 

second (fps). 
 

Effects of harmonic distortion 

The section of the steady state compliance tests in 

the standard, aims at assessing the performance of 

synchrophasor regarding the presence of harmonic 

frequencies in the input signal. A parametric 

waveform may be synthetized from equation (4).  
 

                             
 
   

cos2 ℎ 0 + ℎ … (4) 
 

Where A is the amplitude peak value, f0 is the 

fundamental frequency, 1 is the value of the phase of 

the fundamental component, whereas t is the 

independent variable for time. h is the index value of 

the h-th harmonic up to H. ah(t) is the time-dependent 

amplitude factor of the h-th harmonic component of 

the fundamental and h is the h-th harmonic phase 

value. For these tests, the values of the fundamental 

frequency f0, the phase of the fundamental 

component, and the phase of each harmonic 

component h are fixed. Only one harmonic 

component is evaluated at once. According to the 

standard, in this test the TVE is obtained by applying 

a single harmonic at a time, where harmonics range 

from the 2
nd

 up to the 50
th
 harmonic. The amplitude of 

each harmonic is rated at 10% of the fundamental 

signal. 
 

Effects of fundamental frequency deviations 

The steady state compliance tests in the Standard 

aim at assessing the performance of synchrophasor to 

the effects of off-nominal frequency conditions in the 

input signal. For such purpose the Standard proposes 

using equation (5). 
 

                             … (5) 
 

where A is the amplitude peak value, f0 is the 

fundamental frequency, 1 is the value of the phase of 

the fundamental component, whereas t is the 

independent variable for time, f is the deviation in 

the fundamental frequency from -5 Hz up to 5 Hz in 

discrete steps. In this work four deviations are 

evaluated, they cover the 10 Hz bandwidth required 

by the Standard: -5 Hz, -1 Hz, +1 Hz and +5 Hz. 
 

Effects from simultaneous modulation of amplitude and phase 

For assessing the performance of the proposed 

synchrophasor to the effects of simultaneous 

modulation of amplitude and phase, the section of 

dynamic compliance in the 2011 version of the 

Standard is followed. To conduct this test, the input 

 
 

Fig. 2 — Experimentation a) Implementation of the proposed algorithm on a PXI 8119 for real time applications, b) Proposal technique 

results of modulation for amplitude and phase simultaneous. 
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signal to the synchrophasor is formulated on equation 

(6) for each phase. 
 

                                 
  cos  −  … (6) 

 

whereka is the amplitude modulation factor, kp is the 

phase modulation factor, and m the modulation 

frequency. For this test, the amplitude and phase 

modulation values are ka= 0.1, kp = 0.1, and m = 10, 

respectively, which is the more severe case that the 

Standard requires. The other variables are set the 

same as in equation (1). 

 
Effects of Amplitude and Phase Step 

For assessing the performance of the proposed 

synchrophasor to the effects of step changes of 

amplitude and phase, located in the dynamic 

compliance section in the standard, is followed. To 

conduct this test, the input signal to the synchrophasor 

is formulated on equation (7). 
 

                                      

 … (7) 
 

Where da is the amplitude factor step and dp is the 

phase factor step; µ(t) is the Heaviside step function. 

The test is made in two stages, first da = 0.1 and dp = 0 

and the second one da = 0 and dp = /18. 
 

Effects of a Frequency Ramp 

The dynamic compliance section includes a test 

related with fast frequency changes, consisting of a 

frequency modulation test with an acceleration of ± 1 

Hz/s. In order to conduct this test, the input signal to 

the synchrophasor is formulated on equation (8). 
 

                     
    … (8) 

 

where Rf is the rate of change in the frequency. For 

the test the value is set to 1 Hz/s during 5 s, i.e.: the 

initial and final values of the frequency are 60 Hz and 

65 Hz, respectively. 

 

Results and Discussion 
An experimental setup using real signals has been 

developed. According with the diagram in figure 1a), 
a 1 V signal from an Agilent 33250 A is applied 
directly to the PXI-ADC platform. This experiment 
explores the capability of the synchrophasor 
technique to follow the abrupt changes of amplitude 
of the input signal. The duration of the test is up to  
10 s, while the amplitude of the input signal is step 
changed as follows: step 1, v(t) = 1V; step 2, v(t) = 1.1 

V; step 3, v(t) = 1.2 V; step 4, v(t) = 1.1 V; step 5,  
v(t) = 0.6 V; step 7, v(t) = 0.7 V; step 8, v(t) = 0.8 V; 
step 9, v(t) = 0.9 V; step 10, v(t) = 1.0 V; the 
fundamental frequency of v(t) is 60 Hz. The report is 
120 fps.Figure 2b) illustrates the response of the 
algorithm toresults of modulation for amplitude and 
phase simultaneous. An experimental assessment of 
the performance of the proposed algorithm shows that 
this technique is suitable for implementation on 
platforms for real-time tracking of amplitude, phase 
and frequency quantities of a voltage signal in a 
power system. The proposed algorithm complies well 
the limits established in the IEEE Std. C37.118.1-
2011 and 2014for dynamic conditions. For steady 
state conditions, the measurement errors of the 
algorithm regarding to measurements of amplitude, 
phase and frequency are lower than some parts of 10

4
. 

Specifically, under the presence of harmonics, 
measurement results are at least 1000 times better 
than the requirements of the Standard, and for FE 
shows agreement on 3 x 10

-5
, overcoming the limit 

established in the Standard for both classes of PMU. 
The result shows that the algorithm is nearly 
insensitive to off-nominal frequency conditions. The 
agreement in each case is about some parts in 10

-5 
for 

TVE using an observation window of one 
fundamental cycle. When the reference synchrophasor 
is tested for dynamic conditions, the results confirm 
that the technique complies well with the limits 
established in the Standard. From the tests of 
simultaneous modulation of amplitude and phase, 
experimental results show that the reference 
synchrophasor is capable of correctly following the 
simultaneous changes in amplitude and phase without 
the need of separating the tests. The error in the 
measurement of amplitude is lower than 0.05 % in 
positive sequence amplitude. The report rate is set in 
120 fps. This feature is relevant for applications on 
distribution networks, when dealing with sudden 
changes of amplitude and frequency along with highly 
distorted components. By using the approach in this 
work it might be possible to monitor PQ events and 
provide reports as fast as 120 fps, i.e. half of a 
fundamental cycle. The algorithm can overcome the 
limits of the two classes of PMU defined in the 
Standard; this feature is possible due to the design of 
the adaptive orthogonal filter described in this work in 
combination with corrections in phase and frequency. 
The observation window is one fundamental cycle 
and the filter has a sliding window of one sample at 
the time that allows reaching higher report rates, this 
represents an advantage over traditional approaches 
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that requires complete sequential windows to process. 
The experimental results confirm the capability of the 
algorithm to report at each half cycle of the 
fundamental; this feature allows to observe 
simultaneous changes in amplitude, phase and 
frequency in voltage signals. For environments such 
as distribution networks where the amplitude, phase 
and frequency conditions suddenly change with time, 
having a measuring tool that is capable of determining 
accurately these changes is a key element for 
observability of a power system. The main application 
of a PMU is mainly related to transmission networks. 
For applications on distribution networks it is highly 
appreciated an enhanced PMU with improved 
measurement capabilities of amplitude, phase and 
frequency, which ensures to be robust against severe 
power quality events, as the measuring synchrophasor 
described in this work. 
 

Conclusions 

The simultaneous deviation of amplitude, phase 

and frequency of a signal may be considered as a 

remarkable feature test for a given synchrophasor 

measuring technique. The measurement technique 

proposed in this work provides a real time tracking of 

the amplitude, phase and frequency of the 

fundamental frequency component even if it deviates 

from nominal values. Tests reported in this work 

account for the capability of the proposed technique 

for the instantaneous measurement of the fundamental 

frequency, phase and amplitude, and its feasibility for 

being implemented in a real-time system in high 

report rates beyond those found in the Standard. The 

proposed algorithm is tested using the parameters 

established in standard, presenting acceptable 

performance in dynamic tests, even in the case of 

simultaneous events, which overcome the 

requirements of the version 2014 of the Standard. The 

reference synchrophasor was implemented on a PXI 

platform. Computational effort is lower than other 

synchrophasor estimation approaches. Future work in 

this research will be focused to determine the 

uncertainty of measurement of amplitude, phase, 

frequency, and ROCOF of the proposed reference 

synchrophasor. The analysis of the results of tests on 

the synchrophasor conducted so far show that it  

may be used as a reference measurement standard  

for providing measurement traceability to PMU 

technologies. 
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