Mechanical, thermal and morphological studies of microfibrillated jute/PLA biocomposites

Khan, G M Arifuzzaman; Abdullah-Al-Mamun, M ; Haque, M Ahsanul; Rahman, Md Shafiqur; Shaikh, Hamid ; Anis, Arfat ; Al-Zahrani, Saeed M; Alam, M Shamsul


In the present study, biocomposites based on microfibrillated jute (MFJ) fibre and polylactic acid (PLA) have been prepared by solvent-assisted compression moulding techniques. The MFJ is obtained by a sequence of alkali, chlorite and acid treatments of jute fibre. The biocomposites are fabricated by loading of 10, 20 and 30 wt% of MFJ fibre into the PLA matrix. The effect of MFJ fibre loading on the mechanical, thermal, and morphological properties of the composites is also studied. Among these composites, it is observed that 10 wt% fibre-filled biocomposite shows improved tensile strength andtensile modulus compared to virgin PLA film. Similarly, storage modulus and loss modulus are also found improved for the composites. These composites exhibit higher water absorption capacity and lower thermal stability than virgin PLA. The fibre-matrix adhesion is evaluated by scanning electron microscopy. The results are attributed to the improved interfacial adhesion between MFJ and PLA matrix for 10 wt% fibre-filled biocomposites.


Biocomposites; Mechanical properties; Microfibrillated jute; Morphological properties;

Polylactic acid; Thermal properties

Full Text: PDF (downloaded 1303 times)


  • There are currently no refbacks.
This abstract viewed 2039 times