Investigations of the optical and electrical properties of carbon quantum dots doped conducting polymers for organic solar cell applications

Stalin, T ; Esakkimuthu, S

Abstract

Polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh) have much more attention in energy applications owing to their optical and electrical properties. To overcome the problems associated with these polymers, the Up-Conversion Carbon Quantum Dot (UC-CQD) based materials are employed. That has more desirable features, like hydrophilicity, low toxicity, and high water solubility. The UC-CQD in the electrochemical field is creating great attention to photoluminescent behaviors and low specific capacitance. When UC-CQD is combined with the conducting polymers, the optical properties are enhanced with the help of energy transfer processes. By the advantage of electropolymerization technique, the solubility problems are tackled, because the monomer has coated on the substrate. Herein, the preparation and characterization of the UC-CQD doped, PPy, and PTh films have been reported and their optical and electrical properties are investigated. The band gap of PPy and PPy-CQD is analysed from Tauc plot and calculated to be 2.54 and 1.69 eV respectively. The 50% and 60% mass loss were observed in thermogravimetric analysis for PPy and PPy-CQD respectively. These materials can be used for organic solar cell applications in near future.


Keyword(s)

Conducting polymers; Electropolymerization; Organic solar cell; Upconversion

Full Text: PDF (downloaded 470 times)

Refbacks

  • There are currently no refbacks.
This abstract viewed 832 times