Experimental and finite element analysis of titanium based medial tibial condyle using incremental sheet metal forming



Incremental Sheet Metal Forming (ISMF) is an innovative manufacturing technique for producing prototypes and manufacturing of complex shaped sheet metal parts. Manufacturing of implants and prosthesis for biomedical applications is a challenging task, because it demands the fabrication of complex intricate structures replicating the shapes of human body parts. An attempt was made to clearly describe the capabilities and limitations of a new manufacturing technology to fabricate low cost, specific design medical implants. This study aims to fabricate an implant for medial tibial condyle using single point incremental forming and thereby improve the suitability of the single point incremental forming process. This investigation reports the fundamental knowledge on mechanical behavior of titanium grade 2 sheet metal to design and fabrication of knee implants with rigid hemispherical and roller ball forming tools by means of single point incremental forming process. Influence of major process parameters such as forming force, deformation of sheet, sheet thickness and profile accuracy of part were identified by experimental work and Finite Element (FE) simulations. The result shows that surface finish of the part formed by the roller ball forming tool is better than hemispherical rigid tool.


Incremental sheet metal forming;Knee bone reconstruction;Finite element analysis;Forming tools;Profile accuracy

Full Text: PDF (downloaded 320 times)


  • There are currently no refbacks.
This abstract viewed 314 times